Difference between revisions of "Manuals/calci/IMLN"

From ZCubes Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<div style="font-size:30px">'''IMLN(Complexnumber)'''</div><br/>
 
<div style="font-size:30px">'''IMLN(Complexnumber)'''</div><br/>
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>  
+
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
**IMLN(),returns the natural logarithm of a complex number.
 +
 
  
 
==Description==
 
==Description==

Latest revision as of 15:30, 16 July 2018

IMLN(Complexnumber)


  • is of the form .
    • IMLN(),returns the natural logarithm of a complex number.


Description

  • This function gives the Natural Logarithm of a complex number.
  • In , where Complexnumber is in the form of . i.e & are the real numbers.
  • And is the imaginary unit .
  • Normally Complex logarithm function is an inverse of the Complex exponential function.
  • A logarithm of is a complex number such that and it is denoted by .
  • If with & are real numbers then natural logarithm of a complex number :

adding integer multiples of gives all the others.

  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate the natural logarithm of a complex number in ZOS is .
    • is of the form
  • For e.g.,IMLN("10+17i")
Natural Logarithm of a Complex Number

Examples

  1. IMLN("3-2i")=1.28247467873077-0.588002603547568i
  2. IMLN("6+7i")=2.22132562824516+0.862170054667226i
  3. IMLN("4")=1.38629436111989 +0i
  4. IMLN("10i")=2.30258509299405+1.5707963267949i

Related Videos

Log of Complex Number

See Also

References

Imaginary Logarithms