Difference between revisions of "Manuals/calci/IMLN"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMLN(Complexnumber)'''</div><br/>
 +
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
**IMLN(),returns the natural logarithm of a complex number.
  
Syntax
 
  
</div></div>
+
==Description==
----
+
*This function gives the Natural Logarithm of a complex number.
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*In <math>IMLN(Complexnumber)</math>, where Complexnumber is  in the form of <math>z=x+iy</math>. i.e <math>x</math> & <math>y</math> are the real numbers.
 +
*And <math>I</math> is the imaginary unit <math>i=\sqrt{-1}</math>.
 +
*Normally Complex logarithm function is an inverse of the Complex exponential function.
 +
*A logarithm of <math>z</math> is a complex number <math>w</math> such that <math>z = e^w</math> and it is denoted by <math>ln(z)</math>.
 +
*If <math>z = x+iy</math> with <math>x</math> & <math>y</math> are real numbers then natural logarithm of a complex number :
 +
<math>ln(z)= w = ln(|z|) + iarg(z) = ln(\sqrt{x^2+y^2}+itan^{-1}(\frac{y}{x})</math>                                                                                                                            adding integer multiples of <math>2\pi i</math> gives all the others.
 +
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number.
  
Remarks
+
==ZOS==
 +
*The syntax is to calculate the natural logarithm of a complex number in ZOS is <math>IMLN(Complexnumber)</math>.
 +
**<math>Complexnumber</math> is of the form <math>z=x+iy</math>
 +
*For e.g.,IMLN("10+17i")
 +
{{#ev:youtube|6JwQLlhPwi4|280|center|Natural Logarithm of a Complex Number}}
  
</div></div>
+
==Examples==
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Examples
+
#IMLN("3-2i")=1.28247467873077-0.588002603547568i
 +
#IMLN("6+7i")=2.22132562824516+0.862170054667226i
 +
#IMLN("4")=1.38629436111989 +0i
 +
#IMLN("10i")=2.30258509299405+1.5707963267949i
  
</div></div>
+
==Related Videos==
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
{{#ev:youtube|m-d_Xks90AM|280|center|Log of Complex Number}}
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
+
*[[Manuals/calci/IMLOG2  | IMLOG2 ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function  calculates the natural logarithm of a complex number in a+ bi or a + bj text format.</font></font></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Imaginary_Logarithms Imaginary Logarithms]
  
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMLN</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The natural logarithm of a complex number is: </font></font></font>
 
  
<font color="#484848"></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where:</font></font></font>
+
*[[ Z3 |   Z3 home ]]
 
 
<font color="#484848" face="Arial"></font>
 
 
 
<font color="#484848"></font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMLN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">  is a complex number .</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 1.2824746787307683+0.982793723247329i
 
| class="                                                                  sshl_f  " |
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                                                                                                                                                                                                " |
 
| class="SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMLN(“2+3i”) is 1.28247+0.982794i</font></font></font>
 
 
 
<br />
 
 
 
</div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:equation.jpg|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/equation.jpg]]</div></div>
 
----
 

Latest revision as of 15:30, 16 July 2018

IMLN(Complexnumber)


  • is of the form .
    • IMLN(),returns the natural logarithm of a complex number.


Description

  • This function gives the Natural Logarithm of a complex number.
  • In , where Complexnumber is in the form of . i.e & are the real numbers.
  • And is the imaginary unit .
  • Normally Complex logarithm function is an inverse of the Complex exponential function.
  • A logarithm of is a complex number such that and it is denoted by .
  • If with & are real numbers then natural logarithm of a complex number :

adding integer multiples of gives all the others.

  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate the natural logarithm of a complex number in ZOS is .
    • is of the form
  • For e.g.,IMLN("10+17i")
Natural Logarithm of a Complex Number

Examples

  1. IMLN("3-2i")=1.28247467873077-0.588002603547568i
  2. IMLN("6+7i")=2.22132562824516+0.862170054667226i
  3. IMLN("4")=1.38629436111989 +0i
  4. IMLN("10i")=2.30258509299405+1.5707963267949i

Related Videos

Log of Complex Number

See Also

References

Imaginary Logarithms