Difference between revisions of "Manuals/calci/HYPGEOMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font face="Times New Roman">'''HYPGEOMDIST''' ('''n1, n2, n3, n4)'''</font> <font size="3"><font face="Times New ...")
 
 
(25 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:20px">'''HYPGEOMDIST (sample_s,number_sample,population_s,number_population,cumulative)'''</div><br/>
 +
*<math>samples</math> is the sample's success.
 +
*<math>number sample</math> is the sample's size.
 +
*<math>population s</math> is population's success.
 +
*<math>number population</math> is the population size.
 +
**HYPGEOMDIST(),returns the hypergeometric distribution.
  
<font face="Times New Roman">'''HYPGEOMDIST''' ('''n1, n2, n3, n4)'''</font>
+
==Description==
 +
*This function gives the result of Hypergeometric Distribution.
 +
*This distribution  is a discrete probability distribution which is contrast to the binomial distribution.
 +
*A Hypergeometric random variable is the number of successes that result from a Hypergeometric experiment.
 +
*The probability distribution of a Hypergeometric random variable is called a Hypergeometric Distribution.
 +
*In  HYPGEOMDIST (sample_s,number_sample,population_s,number_population,cumulative) where samples is the number of items in the Sample  that are classified as successes.
 +
*<math>number sample</math> is the total number of items in the sample.
 +
*<math>populations</math> is the number of items in the population  that are classified as successes and <math>numberpopulation</math> is the total number of items in the sample.
 +
*The following conditions are applied to the Hypergeometric distribution:
 +
1.This distribution is applies to sampling without replacement from a finite population whose elements can be
 +
classified into two categories like Success or Failure.
 +
2.The population or set to be sampled consists of N individuals, objects,or elements
 +
3.Each individual can be  success (S) or a failure (F), and there are M successes in the population.
 +
4.A sample of <math>n</math> individuals is selected without replacement in such a way that each subset of
 +
  size <math>n</math> is equally likely to be chosen.
 +
*The Hyper geometric probability distribution is:
 +
<math>\frac{\binom{m}{x}  \binom{N-M}{n-x}}{\binom{m}{x}}</math>
 +
for <math>x</math> is an integer satisfying  <math>max(0, n-N+M)<=x<=min(n,M)</math>. where <math>x</math> is sample's success.
 +
*<math>n</math> is the sample's size.
 +
*<math>M</math> is population's success and <math>N</math> is the population size.
 +
*Here we can give any positive real numbers.
 +
*Suppose we are assigning any decimals numbers it will change in to Integers.
 +
*This function will give result as error when
 +
1.Any one of the argument is non-numeric.
 +
2.<math>samples < 0</math> or samples is greater than the smaller value of numbersample or populations.
 +
3.<math>samples</math> is less than the bigger of 0 or(numbersample-numberpopulation+populations)
 +
4.<math>numbersample \le 0</math> or <math>numbersample>numberpopulation</math>
 +
5.<math>populations \le 0</math> or  <math>populations>numberpopulation</math> or <math>numberpopulation \le 0</math>
  
<font size="3"><font face="Times New Roman">n1- It is the number of successes in the sample</font></font>
+
==ZOS==
 +
*The syntax is to calculate HYPGEOMDIST in ZOS is <math>HYPGEOMDIST (sample s,number sample,population s,number population,cumulative)
 +
</math>
 +
**<math>sample s</math> is the sample's success.
 +
**<math>number sample</math> is the sample's size.
 +
**<math>population s</math> is population's success.
 +
**<math>number population</math> is the population size.
 +
*For e.g.,HYPGEOMDIST(2..3,6..7,9..10,20)
  
<font size="3"><font face="Times New Roman">n2- It is size of the sample</font></font>
+
{{#ev:youtube|fui0xWgBO4g|280|center|Hyper-geometric Distribution}}
  
<font size="3"><font face="Times New Roman">n3-It is the number of successes in the population</font></font>
+
==Examples==
  
<font size="3"><font face="Times New Roman">n4- it is the size of the population</font></font>
+
#Draw 6 cards from a deck without replacement.What is the probability of getting two hearts?
 +
Here M = 13 number of hearts
 +
N = 52 total number of cards
 +
so N-M= 52-13= 39 and
 +
x=2,n=6 so n-x=6-2=4
 +
=HYPGEOMDIST(2,6,13,52)=0.315129882
 +
#42 balls are numbered 1 - 42.You select six numbers between 1 and 42. What is the probability that they contain (i)match 3, (ii) match 4
 +
(i)Here M= 6,N=42,x=3and n=6
 +
HYPGEOMDIST(3,6,6,42)=0.02722185
 +
(ii)Here M= 6,N=42,x=4and n=6
 +
HYPGEOMDIST(4,6,6,42)=0.001801446
  
<font size="3" face="Times New Roman"> </font>
+
==Related Videos==
  
</div>
+
{{#ev:youtube|NMeVWPdo7e4|280|center|Hyper-Geometric Distribution}}
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
  
<font size="3"><font face="Times New Roman">Calculate the hyper geometric distribution.</font></font>
+
==See Also==
 +
*[[Manuals/calci/BINOMDIST  | BINOMDIST ]]
 +
*[[Manuals/calci/COMBIN  | COMBIN ]]
 +
*[[Manuals/calci/FACT  | FACT ]]
  
</div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Hypergeometric_distribution| Hypergeometric Distribution]
<div id="7SpaceContent" class="zcontent" align="left">
 
  
·         <font face="Times New Roman">All arguments are shortened to integers. </font>
 
  
·         <font face="Times New Roman">HYPGEOMDIST calculates error value, when n1 is less than the larger of 0 </font>
 
  
·         <font face="Times New Roman">HYPGEOMDIST calculates error value, n2 is less than or equal to 0(zero) or n2 is grater than the n4. </font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
·         <font face="Times New Roman">HYPGEOMDIST calculates the error value, when n3 is less than or equal to 0(zero) or n3 grater than n4</font>
+
*[[ Z3 Z3 home ]]
 
 
·         <font face="Times New Roman">HYPGEOMDIST calculates error value, when n4 is less than or equal to 0(zero). </font>
 
 
 
<font face="Times New Roman"></font>
 
 
 
<font face="Times New Roman">
 
 
 
Formulas:-
 
 
 
·         <font face="Times New Roman">The equation to calculate the hyper geometric distribution is: </font>
 
 
 
<font face="Times New Roman"></font>
 
 
 
<font face="Times New Roman"></font>
 
 
 
<font size="3"><font face="Times New Roman">Where, n1=x, n2=n, n3=M and n4=N</font></font>
 
 
 
</font></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
HYPGEOMDIST
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
<font color="#484848"><font face="Times New Roman"><font size="1">  </font>HYPGEOMDIST (C1,C2,C3,C4)</font></font>
 
 
 
<font color="#484848"><font face="Times New Roman"></font></font>
 
 
 
<font color="#484848"><font face="Times New Roman"><font size="1">  </font><font face="Times New Roman">HYPGEOMDIST (2,48,6,100)=0.2562</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="sshl_f" | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 2
 
| class=" " | 48
 
| class=" " | 6
 
| class="sshl_f " | 100
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 0.256178
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f    " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
|- class="odd"
 
| Row3
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="   " |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class=" " |
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="  " |
 
|
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Latest revision as of 16:19, 7 August 2018

HYPGEOMDIST (sample_s,number_sample,population_s,number_population,cumulative)


  • is the sample's success.
  • is the sample's size.
  • is population's success.
  • is the population size.
    • HYPGEOMDIST(),returns the hypergeometric distribution.

Description

  • This function gives the result of Hypergeometric Distribution.
  • This distribution is a discrete probability distribution which is contrast to the binomial distribution.
  • A Hypergeometric random variable is the number of successes that result from a Hypergeometric experiment.
  • The probability distribution of a Hypergeometric random variable is called a Hypergeometric Distribution.
  • In HYPGEOMDIST (sample_s,number_sample,population_s,number_population,cumulative) where samples is the number of items in the Sample that are classified as successes.
  • is the total number of items in the sample.
  • is the number of items in the population that are classified as successes and is the total number of items in the sample.
  • The following conditions are applied to the Hypergeometric distribution:
1.This distribution is applies to sampling without replacement from a finite population whose elements can be
classified into two categories like Success or Failure.
2.The population or set to be sampled consists of N individuals, objects,or elements 
3.Each individual can be  success (S) or a failure (F), and there are M successes in the population.
4.A sample of  individuals is selected without replacement in such a way that each subset of 
  size  is equally likely to be chosen.
  • The Hyper geometric probability distribution is:

for is an integer satisfying . where is sample's success.

  • is the sample's size.
  • is population's success and is the population size.
  • Here we can give any positive real numbers.
  • Suppose we are assigning any decimals numbers it will change in to Integers.
  • This function will give result as error when
1.Any one of the argument is non-numeric.
2. or samples is greater than the smaller value of numbersample or populations.
3. is less than the bigger of 0 or(numbersample-numberpopulation+populations)
4. or 
5. or   or 

ZOS

  • The syntax is to calculate HYPGEOMDIST in ZOS is
    • is the sample's success.
    • is the sample's size.
    • is population's success.
    • is the population size.
  • For e.g.,HYPGEOMDIST(2..3,6..7,9..10,20)
Hyper-geometric Distribution

Examples

  1. Draw 6 cards from a deck without replacement.What is the probability of getting two hearts?
Here M = 13 number of hearts
N = 52 total number of cards
so N-M= 52-13= 39 and 
x=2,n=6 so n-x=6-2=4
=HYPGEOMDIST(2,6,13,52)=0.315129882
  1. 42 balls are numbered 1 - 42.You select six numbers between 1 and 42. What is the probability that they contain (i)match 3, (ii) match 4
(i)Here M= 6,N=42,x=3and n=6
HYPGEOMDIST(3,6,6,42)=0.02722185
(ii)Here M= 6,N=42,x=4and n=6
HYPGEOMDIST(4,6,6,42)=0.001801446

Related Videos

Hyper-Geometric Distribution

See Also

References

Hypergeometric Distribution