Difference between revisions of "Manuals/calci/NORMINV"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''NORMINV'''('''p''','''m''','''sd''') '''Where p''' is a probability corresponding to the normal distribution ...") |
|||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''NORMINV (Probability,Mean,StandardDeviation)'''</div><br/> |
+ | *<math>Probability</math> is the probability corresponding to the Normal Distribution. | ||
+ | *<math>Mean</math> is the Mean value. | ||
+ | *<math>StandardDeviation</math> is the Standard Deviation. | ||
+ | **NORMINV(),returns the inverse of the normal cumulative distribution. | ||
− | + | ==Description== | |
+ | *This function gives the inverse of the Normal Cumulative Distribution for the particular Mean and Standard Deviation. | ||
+ | *If <math>NORMDIST (Number,Mean,StandardDeviation,Cumulative,accuracy)=Probability</math>, then <math>NORMINV (Probability,Mean,StandardDeviation)=Number</math>. | ||
+ | *<math>NORMINV</math> using the iterating method to find the value of a Number. | ||
+ | *Suppose the iteration has not converged after 100 searches, then the function gives the error result. | ||
+ | *In <math>NORMINV (Probability,Mean,StandardDeviation)</math>, where <math>Probability</math> is the corresponding probability of the Normal Distribution, <math>Mean</math> is the Arithmetic Mean of the Normal Distribution and <math>StandardDeviation</math> is the Standard Deviation of the Normal Distribution. | ||
+ | *This function will return the result as error when | ||
+ | 1.any one of the argument is non-numeric | ||
+ | 2.Suppose Probability<0 or Probability>1 | ||
+ | 3. StandardDeviation<=0. | ||
+ | *If Mean=0 and StandardDeviation=1, NORMINV uses the Standard Normal Distribution. | ||
− | + | ==Examples== | |
+ | #=NORMINV(0.01884908749,17.4,3.2) = 10.750011 | ||
+ | #=NORMINV(0.998742,5.4,2.3) = 12.349244172 | ||
+ | #=NORMINV(1,7.2,2.3) = NULL | ||
− | + | ==Related Videos== | |
− | |||
− | |||
− | + | {{#ev:youtube|jMFs_1gmqWw|280|center|NORMDIST AND NORMINV}} | |
− | + | ==See Also== | |
− | + | *[[Manuals/calci/NORMDIST | NORMDIST ]] | |
− | + | *[[Manuals/calci/NORMSDIST | NORMSDIST ]] | |
+ | *[[Manuals/calci/NORMSINV | NORMSINV ]] | ||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/Normal_distribution Normal distribution ] | ||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | |||
− | |||
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 16:21, 10 August 2018
NORMINV (Probability,Mean,StandardDeviation)
- is the probability corresponding to the Normal Distribution.
- is the Mean value.
- is the Standard Deviation.
- NORMINV(),returns the inverse of the normal cumulative distribution.
Description
- This function gives the inverse of the Normal Cumulative Distribution for the particular Mean and Standard Deviation.
- If , then .
- using the iterating method to find the value of a Number.
- Suppose the iteration has not converged after 100 searches, then the function gives the error result.
- In , where is the corresponding probability of the Normal Distribution, is the Arithmetic Mean of the Normal Distribution and is the Standard Deviation of the Normal Distribution.
- This function will return the result as error when
1.any one of the argument is non-numeric 2.Suppose Probability<0 or Probability>1 3. StandardDeviation<=0.
- If Mean=0 and StandardDeviation=1, NORMINV uses the Standard Normal Distribution.
Examples
- =NORMINV(0.01884908749,17.4,3.2) = 10.750011
- =NORMINV(0.998742,5.4,2.3) = 12.349244172
- =NORMINV(1,7.2,2.3) = NULL
Related Videos
See Also
References