Difference between revisions of "Manuals/calci/NORMSDIST"
Jump to navigation
Jump to search
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''NORMSDIST( | + | <div style="font-size:30px">'''NORMSDIST (Number,Accuracy)'''</div><br/> |
− | *<math> | + | *<math>Number</math> is the value of the function . |
− | + | *<math>Accuracy</math> is correct decimal places for the result. | |
+ | **NORMSDIST(),returns the standard normal cumulative distribution. | ||
==Description== | ==Description== | ||
− | *This function gives the Standard | + | *This function gives the Standard Normal Cumulative Distribution function. |
− | *In | + | *In Normal Distribution formula, if the Mean is zero and the Standard Deviation is 1, then it is called Standard Normal Distribution. |
− | *The equation for the | + | *The equation for the Standard Normal Density function is:<math> f(x)=\frac{1}{\sqrt 2 \pi}. e^{-{\tfrac{x^2}{2}}}</math> |
− | *This function will return the result as error when the x value is non-numeric. | + | *This function will return the result as error when the <math>x</math> value is non-numeric. |
==Examples== | ==Examples== | ||
Line 14: | Line 15: | ||
#=NORMSDIST(1.00006) = 0.8413586589 | #=NORMSDIST(1.00006) = 0.8413586589 | ||
#=NORMSDIST(12) = 1.0000002451499 | #=NORMSDIST(12) = 1.0000002451499 | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|F2rKy2cI8Ss|280|center|NORMSDIST}} | ||
==See Also== | ==See Also== | ||
Line 22: | Line 27: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Normal_distribution Normal distribution ] | [http://en.wikipedia.org/wiki/Normal_distribution Normal distribution ] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:22, 10 August 2018
NORMSDIST (Number,Accuracy)
- is the value of the function .
- is correct decimal places for the result.
- NORMSDIST(),returns the standard normal cumulative distribution.
Description
- This function gives the Standard Normal Cumulative Distribution function.
- In Normal Distribution formula, if the Mean is zero and the Standard Deviation is 1, then it is called Standard Normal Distribution.
- The equation for the Standard Normal Density function is:
- This function will return the result as error when the value is non-numeric.
Examples
- =NORMSDIST(4.74) = 0.9999975333
- =NORMSDIST(5.0021) = 0.9999999738
- =NORMSDIST(1.00006) = 0.8413586589
- =NORMSDIST(12) = 1.0000002451499
Related Videos
See Also
References