Difference between revisions of "Manuals/calci/TORUS"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
=TORUS (Radius,TubeRadius,w1) =
+
<div style="font-size:30px">'''TORUS (Radius,TubeRadius,w1)'''</div><br/>
 
 
 
where
 
where
 
*<math>Radius</math> and <math>TubeRadius</math> are radius value of the circle.
 
*<math>Radius</math> and <math>TubeRadius</math> are radius value of the circle.
 
+
**TORUS() shows the Torus for the given value.
TORUS() shows the Torus for the given value.
 
  
 
==Description==
 
==Description==

Revision as of 16:49, 22 August 2018

TORUS (Radius,TubeRadius,w1)


where

  • and are radius value of the circle.
    • TORUS() shows the Torus for the given value.

Description

TORUS (Radius,TubeRadius,w1)

  • is the radius value of the bigger circle.
  • is the radius value of the smaller circle.
  • A torus is a surface of revolution generated by revolving a circle in three dimensional space about an axis co planar with the circle. *If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution.
  • For example of TORUS are rings, doughnuts, and bagels.
  • A torus can be defined parametrically by:



where , are angles which make a full circle, so that their values start and end at the same point.

  • is the distance from the center of the tube to the center of the torus.
  • is the radius of the tube.
  • is known as the "major radius" and is known as the "minor radius".
  • The ratio R divided by r is known as the aspect ratio.
  • The typical doughnut confectionery has an aspect ratio of about 3 to 2.

Examples

See Also

References