Difference between revisions of "Manuals/calci/TTESTTWOSAMPLESEQUALVARIANCES"
Jump to navigation
Jump to search
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size: | + | <div style="font-size:25px">'''TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)'''</div><br/> |
*<math>Array1 </math> and <math> Array2 </math> are set of values. | *<math>Array1 </math> and <math> Array2 </math> are set of values. | ||
*<math>HypothesizedMeanDifference </math> is the Hypothesized Mean Difference. | *<math>HypothesizedMeanDifference </math> is the Hypothesized Mean Difference. | ||
*<math> Alpha </math> is the significance level. | *<math> Alpha </math> is the significance level. | ||
*<math> NewTableFlag </math> is either 0 or 1. | *<math> NewTableFlag </math> is either 0 or 1. | ||
+ | **TTESTTWOSAMPLESEQUALVARIANCES(), determines whether two sample means are equal. | ||
==Description== | ==Description== | ||
Line 24: | Line 25: | ||
2.Alpha>1 | 2.Alpha>1 | ||
3.<math>Array1 </math> and <math> Array2 </math> are having different number of data points. | 3.<math>Array1 </math> and <math> Array2 </math> are having different number of data points. | ||
+ | |||
+ | ==Examples== | ||
+ | {| class="wikitable" | ||
+ | |+Spreadsheet | ||
+ | |- | ||
+ | ! !! A !! B !! C !! D!! E !! F | ||
+ | |- | ||
+ | ! 1 | ||
+ | | 10 || 15 || 18 || 27 || 12 || 34 | ||
+ | |- | ||
+ | ! 2 | ||
+ | | 17 || 20 || 25 || 39 || 9 || 14 | ||
+ | |} | ||
+ | |||
+ | #=TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0) | ||
+ | {| class="wikitable" | ||
+ | |+t-Test: Two-Sample Assuming Equal Variances | ||
+ | |- | ||
+ | ! !! Variable 1 !! Variable 2 | ||
+ | |- | ||
+ | ! Mean | ||
+ | | 19.333333333333332 || 20.666666666666668 | ||
+ | |- | ||
+ | ! Variance | ||
+ | | 87.06666666666666 || 109.86666666666667 | ||
+ | |- | ||
+ | ! Observations | ||
+ | | 6 || 6 | ||
+ | |- | ||
+ | ! Pooled Variance | ||
+ | | 98.46666666666667 | ||
+ | |- | ||
+ | ! Hypothesized Mean Difference | ||
+ | | 2 | ||
+ | |- | ||
+ | ! Degree Of Freedom | ||
+ | | 10 | ||
+ | |- | ||
+ | ! T- Statistics | ||
+ | | -0.5818281835787091 | ||
+ | |- | ||
+ | ! P(T<=t) One-tail | ||
+ | | 0.28678199670723614 | ||
+ | |- | ||
+ | ! T Critical One-Tail | ||
+ | | 0 | ||
+ | |- | ||
+ | ! P(T<=t) Two-tail | ||
+ | | 0.5735639934144723 | ||
+ | |- | ||
+ | ! T Critical Two-Tail | ||
+ | | 0.6998120613365443 | ||
+ | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=-pTbC_tBy6w|280|center|T Test two sample Equal variances}} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/TTEST | TTEST ]] | ||
+ | *[[Manuals/calci/TDIST | TDIST ]] | ||
+ | *[[Manuals/calci/TINV | TINV ]] | ||
+ | *[[Manuals/calci/TTESTTWOSAMPLESUNEQUALVARIANCES | TTESTTWOSAMPLESUNEQUALVARIANCES ]] | ||
+ | |||
+ | ==References== | ||
+ | *[http://en.wikipedia.org/wiki/Student%27s_t-test Student's t-distribution] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 14:48, 6 December 2018
TTESTTWOSAMPLESEQUALVARIANCES (Array1,Array2,HypothesizedMeanDifference,Alpha,NewTableFlag)
- and are set of values.
- is the Hypothesized Mean Difference.
- is the significance level.
- is either 0 or 1.
- TTESTTWOSAMPLESEQUALVARIANCES(), determines whether two sample means are equal.
Description
- This function calculating the two Sample for equal variances determines whether two sample means are equal.
- We can use this test when both:
- 1.The two sample sizes are equal;
- 2.It can be assumed that the two distributions have the same variance.
- In , and are two arrays of sample values. is the Hypothesized Mean Difference .
- Suppose HypothesizedMeanDifference=0 which indicates that sample means are hypothesized to be equal.
- is the significance level which ranges from 0 to 1.
- is either 0 or 1.
- "1" is indicating the result will display in new worksheet.Suppose we are omitted the NewTableFlag value it will consider the value as "0".
- The t statistic of this function calculated by:
where
- Here and are unbiased estimators of the variances of two samples. is the grand standard deviation data 1 and data2 and n is the data points of two data set.
- This function will give the result as error when
1.any one of the argument is non-numeric. 2.Alpha>1 3. and are having different number of data points.
Examples
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
1 | 10 | 15 | 18 | 27 | 12 | 34 |
2 | 17 | 20 | 25 | 39 | 9 | 14 |
- =TTESTTWOSAMPLESEQUALVARIANCES(A1:F1,A2:F2,2,0.5,0)
Variable 1 | Variable 2 | |
---|---|---|
Mean | 19.333333333333332 | 20.666666666666668 |
Variance | 87.06666666666666 | 109.86666666666667 |
Observations | 6 | 6 |
Pooled Variance | 98.46666666666667 | |
Hypothesized Mean Difference | 2 | |
Degree Of Freedom | 10 | |
T- Statistics | -0.5818281835787091 | |
P(T<=t) One-tail | 0.28678199670723614 | |
T Critical One-Tail | 0 | |
P(T<=t) Two-tail | 0.5735639934144723 | |
T Critical Two-Tail | 0.6998120613365443 |
Related Videos
See Also
References