Difference between revisions of "Manuals/calci/MATRIXDIAGONALPRODUCT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''MATRIXDIAGONALPRODUCT (a)'''</div><br/> *<math> a </math> is any square matrix. ==Description== *This function shows the product value of the m...")
 
 
(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
 
*Here it is calculating the product of the main diagonal values.
 
*Here it is calculating the product of the main diagonal values.
 
*So it is calculating  <math>a_{11}*a_{22}*a_{33}</math> and so on.
 
*So it is calculating  <math>a_{11}*a_{22}*a_{33}</math> and so on.
 +
 +
==Examples==
 +
# MATRIXDIAGONALPRODUCT([[5,8,12,13],[4,3,2,8],[7,2,5,3],[3,5,9,11]]) = 825
 +
# MATRIXDIAGONALPRODUCT([[1,2,3],[4,5,6],[9,8,6]]) = 30
 +
# MATRIXDIAGONALPRODUCT([[14,12],[13,15]]) = 210
 +
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=vzt9c7iWPxs|280|center|Matrix Multiplication}}
 +
 +
==See Also==
 +
*[[Manuals/calci/PRODUCT| PRODUCT]]
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/DIAGONALMATRIX| DIAGONALMATRIX ]]
 +
 +
==References==
 +
*[https://en.wikipedia.org/wiki/Main_diagonal  Main diagonal]
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 13:49, 12 April 2019

MATRIXDIAGONALPRODUCT (a)


  • is any square matrix.

Description

  • This function shows the product value of the main diagonal values.
  • In , is any square matrix.
  • The main diagonal of a matrix consists of those elements that lie on the diagonal that runs from top left to bottom right.
  • Main diagonal of a matrix A is defined by A is the collection of entries ,where i=j.
  • So diagonal entries are and so on.
  • Here it is calculating the product of the main diagonal values.
  • So it is calculating and so on.

Examples

  1. MATRIXDIAGONALPRODUCT([[5,8,12,13],[4,3,2,8],[7,2,5,3],[3,5,9,11]]) = 825
  2. MATRIXDIAGONALPRODUCT([[1,2,3],[4,5,6],[9,8,6]]) = 30
  3. MATRIXDIAGONALPRODUCT([[14,12],[13,15]]) = 210


Related Videos

Matrix Multiplication

See Also

References