Difference between revisions of "Manuals/calci/MATRIXINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''MATRIXINVERSE (a)'''</div><br/> *<math>a</math> is any matrix. ==Description== *This function shows the inverse value of the given matrix. *In ...")
 
 
(5 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
*This function shows the inverse value of the given matrix.
 
*This function shows the inverse value of the given matrix.
 
*In <math>MATRIXINVERSE (a)</math>, <math>a</math> is any square matrix.
 
*In <math>MATRIXINVERSE (a)</math>, <math>a</math> is any square matrix.
*Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by <math>A^-1</math>.
+
*Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by <math>A^{-1}</math>.
 
*Consider the square matrix A has an inverse which should satisfies the following condition <math>|A|\ne 0</math>
 
*Consider the square matrix A has an inverse which should satisfies the following condition <math>|A|\ne 0</math>
 
*Also <math>AA^{-1}=I</math>(Identity matrix).
 
*Also <math>AA^{-1}=I</math>(Identity matrix).
Line 13: Line 13:
 
a  & b    \\  
 
a  & b    \\  
 
c  & d
 
c  & d
\end{bmatrix}}{-1}</math>,
+
\end{bmatrix}}^{-1}</math>=<math>\frac{1}{det A }\begin{bmatrix}
 +
d  & -b    \\
 +
-c  & a
 +
\end{bmatrix}</math> =<math>\frac{1}{ad-bc} \begin{bmatrix}
 +
d  & -b    \\
 +
-c  & a
 +
\end{bmatrix}</math>
 +
*Consider 3x3 matrix A and its inverse is calculated by
 +
<math>A^{-1}={\begin{bmatrix}
 +
a  & b & c    \\
 +
d & e & f \\
 +
g & h & i
 +
\end{bmatrix}}^{-1}</math>=<math>\frac{1}{det A }{\begin{bmatrix}
 +
A  & B & C    \\
 +
D & E & F \\
 +
G & H & I
 +
\end{bmatrix}}^T </math>= <math>\frac{1}{det A } {\begin{bmatrix}
 +
A  & D & G    \\
 +
B & E & H \\
 +
C & F & I
 +
\end{bmatrix}}</math>
 +
where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce)  H=-(af-cd);I=(ae-bd)
 +
 
 +
==Examples==
 +
1. MATRIXINVERSE([4,7;2,6])
 +
{| class="wikitable"
 +
|-
 +
| 0.6 || -0.7
 +
|-
 +
| -0.2 || 0.4
 +
|}
 +
2. MATRIXINVERSE([1,2,3;0,1,4;5,6,0])
 +
{| class="wikitable"
 +
|-
 +
| -24 || 18 || 5
 +
|-
 +
| 20 || -15 || -4
 +
|-
 +
| -5 || 4 || 1
 +
|}
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=Fg7_mv3izR0|280|center|Matrix Inverse}}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/MATRIXOPERATORS| MATRIXOPERATORS]]
 +
*[[Manuals/calci/MATRIXDETERMINANT| MATRIXDETERMINANT]]
 +
*[[Manuals/calci/DET| DET]]
 +
 
 +
==References==
 +
*[https://en.wikipedia.org/wiki/Invertible_matrix Matrix Inverse]
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 13:55, 12 April 2019

MATRIXINVERSE (a)


  • is any matrix.

Description

  • This function shows the inverse value of the given matrix.
  • In , is any square matrix.
  • Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by .
  • Consider the square matrix A has an inverse which should satisfies the following condition
  • Also (Identity matrix).
  • Consider 2x2 matrix:A=[a b;c d].
  • The inverse of matrix A is calculated by

= =

  • Consider 3x3 matrix A and its inverse is calculated by

==

where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce)  H=-(af-cd);I=(ae-bd)

Examples

1. MATRIXINVERSE([4,7;2,6])

0.6 -0.7
-0.2 0.4

2. MATRIXINVERSE([1,2,3;0,1,4;5,6,0])

-24 18 5
20 -15 -4
-5 4 1

Related Videos

Matrix Inverse

See Also

References