Difference between revisions of "Manuals/calci/VARPA"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''VARPA'''</font></font></font><font color="#4...")
 
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> 
+
<div style="font-size:30px">'''VARPA()'''</div><br/>
 +
*Parameters are set of numbers.
 +
**VARPA(),calculates variance based on the entire population, including numbers, text, and logical values.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''VARPA'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(v1,v2,...)</font></font></font>
+
==Description==
 +
*This function gives the variance based on the entire population.
 +
*Variance is a measure of dispersion obtained by taking the mean of the squared deviations of the observed values from their mean in a frequency distribution.
 +
*i.e.,variance  is a measure of how far each value in the data set is from the mean.
 +
*It is denoted by <math> \sigma </math>. The square root of variance is called the standard deviation.
 +
*In <math>VARPA()</math>, Parameters are numbers based on a  population. Here First Parameter is required.From the Second Parameter are optional.
 +
*To find the variance we can use the following formula:
 +
<math>Variance= \frac{\sum (x_i-\bar{x})^2}{n-1}</math>  
 +
where <math> \bar{x}</math> is the sample mean of <math> x_i</math> and <math> n </math> is the sample size.
 +
*Suppose <math>\sigma = 0</math> which is indicating all the values are identical.
 +
*When <math>\sigma </math> is non-zero then it is always positive. 
 +
*This function is considering our given data is the entire population.
 +
*Suppose it should consider the data as the sample of the population, we can use the [[Manuals/calci/VARA  | VARA ]]  function.
 +
*The arguments can be  either numbers or names, array,constants or references that contain numbers. 
 +
*Also we can give the text representations of numbers or logical values , like TRUE or FALSE, in a reference.  
 +
*Suppose the arguments containing TRUE which is evaluate as 1, and the arguments containing FALSE which is evaluate as 0.
 +
*Suppose the array contains the empty cells and text values like that values are not considered.
 +
*Suppose the function don't want to consider the logical values and text representations of numbers in a reference , we can use the [[Manuals/calci/VARP  | VARP ]]  function.
 +
*This function will return the result as error when
 +
      1. Any one of the argument is non-numeric.
 +
      2. The arguments containing the error values or text that cannot be translated in to numbers.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where v1,v2...are arguments</font></font></font>
+
==Examples==
 
+
{| class="wikitable"
</div>
+
|+Spreadsheet
----
+
|-
<div id="1SpaceContent" class="zcontent" align="left"><font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the variance based on the entire population. </font></font></font></div>
+
! !! A !! B !! C !! D!! E !! F 
----
+
|-
<div id="7SpaceContent" class="zcontent" align="left">
+
! 1
 
+
| 40 || 45 || 60 || 24 || 72 || 81
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The Arguments can be numbers or names, arrays, or references. </font></font></font>
+
|-
 
+
! 2
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Logical values and text representations of numbers are calculated. </font></font></font>
+
| 10.21 || 11.65 || 17.81 || 15.02 || 18.18 || 27.41
 
+
|}
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Here an Arguments contain TRUE, then that calculate as 1; and that contain FALSE evaluate as 0 (zero). </font></font></font>
+
#=VARPA(A1:F1) = 377.555555556
 
+
#=VARPA(A1:F2) = 31.4284222222
<font color="#484848" face="Arial"></font>
+
#=VARPA(12,23,34,45,true) = 242
 
+
#=VARPA(12,23,34,45,FALSE) = 250.96000000000004
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The equation for VARPA is : </font></font></font>
 
 
 
<font color="#484848"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where x is the sample mean AVERAGE(v1,v2,) and n is the sample size.</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
VARPA
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Lets see an example,'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''VARPA(v1,v2....)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''B'''</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">150</font></font></font>
+
==Related Videos==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">130</font></font></font>
+
{{#ev:youtube|2evEY6MTxZQ|280|center|Sample Variance}}
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">165</font></font></font>
+
==See Also==
 +
*[[Manuals/calci/DVAR | DVAR ]]
 +
*[[Manuals/calci/DVARP  | DVARP ]]
 +
*[[Manuals/calci/VARP  | VARP ]]
 +
*[[Manuals/calci/VAR | VAR]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">132</font></font></font>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Variance Variance]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">110</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">137</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">121</font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=VARPA(B2:B8) is 283.43</nowiki></font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 150
 
| class="sshl_f" | 283.428571
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 130
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 165
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 132
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" | 110
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 137
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 121
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:24.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/24.JPG]]</div></div>
 
----
 

Latest revision as of 00:22, 1 July 2019

VARPA()


  • Parameters are set of numbers.
    • VARPA(),calculates variance based on the entire population, including numbers, text, and logical values.

Description

  • This function gives the variance based on the entire population.
  • Variance is a measure of dispersion obtained by taking the mean of the squared deviations of the observed values from their mean in a frequency distribution.
  • i.e.,variance is a measure of how far each value in the data set is from the mean.
  • It is denoted by . The square root of variance is called the standard deviation.
  • In , Parameters are numbers based on a population. Here First Parameter is required.From the Second Parameter are optional.
  • To find the variance we can use the following formula:

where is the sample mean of and is the sample size.

  • Suppose which is indicating all the values are identical.
  • When is non-zero then it is always positive.
  • This function is considering our given data is the entire population.
  • Suppose it should consider the data as the sample of the population, we can use the VARA function.
  • The arguments can be either numbers or names, array,constants or references that contain numbers.
  • Also we can give the text representations of numbers or logical values , like TRUE or FALSE, in a reference.
  • Suppose the arguments containing TRUE which is evaluate as 1, and the arguments containing FALSE which is evaluate as 0.
  • Suppose the array contains the empty cells and text values like that values are not considered.
  • Suppose the function don't want to consider the logical values and text representations of numbers in a reference , we can use the VARP function.
  • This function will return the result as error when
     1. Any one of the argument is non-numeric. 
     2. The arguments containing the error values or text that cannot be translated in to numbers. 

Examples

Spreadsheet
A B C D E F
1 40 45 60 24 72 81
2 10.21 11.65 17.81 15.02 18.18 27.41
  1. =VARPA(A1:F1) = 377.555555556
  2. =VARPA(A1:F2) = 31.4284222222
  3. =VARPA(12,23,34,45,true) = 242
  4. =VARPA(12,23,34,45,FALSE) = 250.96000000000004

Related Videos

Sample Variance

See Also

References