Difference between revisions of "Manuals/calci/SIN"

From ZCubes Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 49: Line 49:
 
| 10 || -0.5440211108893698  
 
| 10 || -0.5440211108893698  
 
|}
 
|}
 +
*1..100@["z^2",SIN,COS] will display the Square value, Sin and Cos value from 1 to 100
  
 
== Examples ==
 
== Examples ==
Line 91: Line 92:
  
 
|- class="even"
 
|- class="even"
|-0.7568024953079282
+
| -0.7568024953079282
  
 
|- class="odd"
 
|- class="odd"
|-0.9589242746631385
+
| -0.9589242746631385
  
 
|- class="even"
 
|- class="even"
|-0.27941549819892586
+
| -0.27941549819892586
  
 
|- class="odd"
 
|- class="odd"
Line 109: Line 110:
  
 
|- class="even"
 
|- class="even"
|(-0.5440211108893698)
+
| -0.5440211108893698
  
 +
|}
 +
 +
*d.io().columns(["Number","SIN"])
 +
{| class="wikitable"
 +
|-
 +
! Number !! SIN
 +
|-
 +
| 1 || 0.8414709848078965
 +
|-
 +
| 2 || 0.9092974268256817
 +
|-
 +
| 3 || 0.1411200080598672
 +
|-
 +
| 4 || -0.7568024953079282
 +
|-
 +
| 5 || -0.9589242746631385
 +
|-
 +
| 6 || -0.27941549819892586
 +
|-
 +
| 7 || 0.6569865987187891
 +
|-
 +
| 8 || 0.9893582466233818
 +
|-
 +
| 9 || 0.4121184852417566
 +
|-
 +
| 10 || -0.5440211108893698
 +
|}
 +
 +
*d.io().column("Number","SIN")
 +
{| class="wikitable"
 +
|-
 +
! Number !! SIN
 +
|-
 +
| 1 || 0.8414709848078965
 +
|-
 +
| 2 || 0.9092974268256817
 +
|-
 +
| 3 || 0.1411200080598672
 +
|-
 +
| 4 || -0.7568024953079282
 +
|-
 +
| 5 || -0.9589242746631385
 +
|-
 +
| 6 || -0.27941549819892586
 +
|-
 +
| 7 || 0.6569865987187891
 +
|-
 +
| 8 || 0.9893582466233818
 +
|-
 +
| 9 || 0.4121184852417566
 +
|-
 +
| 10 || -0.5440211108893698
 
|}
 
|}
  

Latest revision as of 06:18, 11 February 2020

SIN(Number)


  • where Number is the angle in Radians.
  • by default Calci uses Radian as angle.
    • SIN(), returns the sine of the given angle.

DSIN can be used if the angle is in degrees.

The angle can be a single value or any complex array of values.

For example SIN(1..100) can give an array of the results, which is the SIN value for each of the elements in the array. The array could be of any values either '+' or '-' like 1..5@SIN or (-5)..(-1)@SIN.

Description

Consider     x = 90    then     =SIN(RADIANS(90))    gives    1
The above function gives the Sine of 'x' in Degree.

  • In a right angled triangle, SIN = Opposite side / Hypotenuse.
  • SIN function determines the Sine of the given angle
  • By default, Calci takes the angle in Radians

To convert Radians to Degrees multiply with 180/PI() or we have to use the Radians function SIN(RADIANS(x)) or DSIN(x).

  • SIN(-x) = -SIN(x),where x is any Number.

The following example shows how SIN is applied to an array of numbers containing angles 1..10.

  • Type =1..10@SIN in Calci
  • Type =1..10@SIN or 1..10@SIN in ZOS


Angles SIN
1 0.8414709848078965
2 0.9092974268256817
3 0.1411200080598672
4 -0.7568024953079282
5 -0.9589242746631385
6 -0.27941549819892586
7 0.6569865987187891
8 0.9893582466233818
9 0.4121184852417566
10 -0.5440211108893698
  • 1..100@["z^2",SIN,COS] will display the Square value, Sin and Cos value from 1 to 100

Examples

SIN(Number)

  • Number  is the angle in radians.
SIN(Radian) Value
SIN(0) 0
SIN(1) 0.8414709848
SIN(90) 0.8939966636
  • d=1..10@SIN;
  • d.columns("SIN")
SIN
0.8414709848078965
0.9092974268256817
0.1411200080598672
-0.7568024953079282
-0.9589242746631385
-0.27941549819892586
0.6569865987187891
0.9893582466233818
0.4121184852417566
-0.5440211108893698
  • d.io().columns(["Number","SIN"])
Number SIN
1 0.8414709848078965
2 0.9092974268256817
3 0.1411200080598672
4 -0.7568024953079282
5 -0.9589242746631385
6 -0.27941549819892586
7 0.6569865987187891
8 0.9893582466233818
9 0.4121184852417566
10 -0.5440211108893698
  • d.io().column("Number","SIN")
Number SIN
1 0.8414709848078965
2 0.9092974268256817
3 0.1411200080598672
4 -0.7568024953079282
5 -0.9589242746631385
6 -0.27941549819892586
7 0.6569865987187891
8 0.9893582466233818
9 0.4121184852417566
10 -0.5440211108893698

Related Videos

Sine

See Also

References