Difference between revisions of "Manuals/calci/VAR"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''VAR'''</font></font></font><font color="#484848"...")
 
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''VAR'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(n1,n2,...)</font></font></font>
+
<div style="font-size:30px">'''VAR()'''</div><br/>
 +
*Parameters are set of numbers.
 +
**VAR(),estimates variance based on a sample.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where n1,n2...are arguments.</font></font></font>
+
==Description==
 +
*This function gives the variance based on a sample.
 +
*Variance is a measure of dispersion obtained by taking the mean of the squared deviations of the observed values from their mean in a frequency distribution.
 +
*i.e.,variance  is a measure of how far each value in the data set is from the mean.
 +
*It is denoted by <math> \sigma </math>. The square root of variance is called the standard deviation.
 +
*In <math>VAR()</math>, Parameters are numbers based on a sample of a population. Here First parameter is required. From the second parameter are optional.  
 +
*To find the variance we can use the following formula:
 +
<math>Variance= \frac{\sum (x_i-\bar{x})^2}{n-1}</math>
 +
where <math> \bar{x}</math> is the sample mean of <math>x_i</math> and <math> n </math> is the sample size.
 +
*Suppose <math>\sigma = 0</math> which is indicating all the values are identical.
 +
*When <math>\sigma </math> is non-zero then it is always positive.
 +
*This function is considering our given data is the sample of the population.
 +
*Suppose it should consider the data as the entire population, we can use the [[Manuals/calci/VARP  | VARP ]] function.
 +
*The arguments can be be either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logical values or empty cells, like that values are not considered.
 +
*When we are entering logical values and text representations of numbers  as directly, then the arguments are counted.
 +
*Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the [[Manuals/calci/VARA  | VARA ]] function.
 +
*This function will return the result as error when
 +
    1. Any one of the argument is nonnumeric.
 +
    2. The arguments containing the error values or text that cannot be translated in to numbers.
  
</div>
+
==Examples==
----
+
{| class="wikitable"
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the variance based on a sample.</font></font></font></div>
+
|+Spreadsheet
----
+
|-
<div id="7SpaceContent" class="zcontent" align="left">
+
! !! A !! B !! C !! D!! E !! F !! G !! H !! I !! J
 
+
|-
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Arguments can be numbers or names, arrays, or references.</font></font></font>
+
! 1
 
+
| 78 || 61 || 53 || 46 || 24 || 19 || 82 || 90 || 45 || 10
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The logical values and the text representations of numbers are counted.</font></font></font>
+
|-
 
+
! 2
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Use the VARA function, t to include logical values and text representations of numbers. ]</font></font></font>
+
| 10.25 || 16.74 || 18.09 || 20.43 || 22.22 || 11.98 || 24 || 19 || 10 || 75
 
+
|-
<font color="#484848" face="Arial"></font>
+
!3
 
+
| 50 || 58 || 81 || true || 12 || 81 || 10 || 27 || 24 || 39
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The formula to find out VAR is: </font></font></font>
+
|}
 +
#=VAR(A1:J1) = 756.6222222223
 +
#=VAR(A2:E2) = 21.0852299999
 +
#=VAR(A3:D3) = 1133.6666666666667
 +
#=VAR(A3:C3) = 259
 +
#=VAR(10,25,18,FALSE) = 115.58333333333333
 +
#=VAR(10,25,18,TRUE) = 107
  
<font color="#484848"></font>
+
==Related Videos==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
+
{{#ev:youtube|2evEY6MTxZQ|280|center|Sample Variance}}
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
+
==See Also==
 +
*[[Manuals/calci/DVAR | DVAR]]
 +
*[[Manuals/calci/DVARP  | DVARP ]]
 +
*[[Manuals/calci/VARP  | VARP ]]
 +
*[[Manuals/calci/VARA | VARA]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where x is the sample mean average (n1,n2,…) and n is the sample size.</font></font></font>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Variance Variance]
  
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
VAR
 
  
</div></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Lets see an example, '''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''B'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">150</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">130</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">165</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">132</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">110</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">137</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">121</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=VAR(B2:B8) is 330.67</nowiki></font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 150
 
| class="sshl_f" | 330.666667
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 130
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 165
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f  " | 132
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " | 110
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 137
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 121
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:29.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/29.JPG]]</div></div>
 
----
 

Latest revision as of 03:41, 2 June 2020

VAR()


  • Parameters are set of numbers.
    • VAR(),estimates variance based on a sample.

Description

  • This function gives the variance based on a sample.
  • Variance is a measure of dispersion obtained by taking the mean of the squared deviations of the observed values from their mean in a frequency distribution.
  • i.e.,variance is a measure of how far each value in the data set is from the mean.
  • It is denoted by . The square root of variance is called the standard deviation.
  • In , Parameters are numbers based on a sample of a population. Here First parameter is required. From the second parameter are optional.
  • To find the variance we can use the following formula:

where is the sample mean of and is the sample size.

  • Suppose which is indicating all the values are identical.
  • When is non-zero then it is always positive.
  • This function is considering our given data is the sample of the population.
  • Suppose it should consider the data as the entire population, we can use the VARP function.
  • The arguments can be be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logical values or empty cells, like that values are not considered.
  • When we are entering logical values and text representations of numbers as directly, then the arguments are counted.
  • Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the VARA function.
  • This function will return the result as error when
    1. Any one of the argument is nonnumeric. 
    2. The arguments containing the error values or text that cannot be translated in to numbers.

Examples

Spreadsheet
A B C D E F G H I J
1 78 61 53 46 24 19 82 90 45 10
2 10.25 16.74 18.09 20.43 22.22 11.98 24 19 10 75
3 50 58 81 true 12 81 10 27 24 39
  1. =VAR(A1:J1) = 756.6222222223
  2. =VAR(A2:E2) = 21.0852299999
  3. =VAR(A3:D3) = 1133.6666666666667
  4. =VAR(A3:C3) = 259
  5. =VAR(10,25,18,FALSE) = 115.58333333333333
  6. =VAR(10,25,18,TRUE) = 107

Related Videos

Sample Variance

See Also

References