Difference between revisions of "Manuals/calci/NORMSINV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''NORMSINV(prob)'''</div><br/>
+
<div style="font-size:30px">'''NORMSINV (Probability)'''</div><br/>
*<math>prob</math> prob is the probability value.
+
*<math>Probability</math> is the value of the Probability.
 +
** NORMSINV(),returns the inverse of the standard normal cumulative distribution.
  
 
==Description==
 
==Description==
 
*This function gives the inverse of the Standard Normal Cumulative Distribution.   
 
*This function gives the inverse of the Standard Normal Cumulative Distribution.   
 
*In Normal Distribution formula, when the Mean is zero and the Standard Deviation is 1 then it is called Standard Normal Distribution.
 
*In Normal Distribution formula, when the Mean is zero and the Standard Deviation is 1 then it is called Standard Normal Distribution.
*If <math> NORMSDIST(x)=prob</math>, then <math>NORMSINV(prob)=x</math>.
+
*If <math> NORMSDIST (Number,Accuracy)=Probability</math>, then <math>NORMSINV (Probability)=Number</math>.
*<math>NORMSINV</math> using the iterating method to find the value of <math>x</math>.
+
*<math>NORMSINV</math> using the iterating method to find the value of <math>Number</math>.
 
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.
 
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.
*In <math>NORMSINV(prob)</math>, where <math>prob</math> is the probability value of the Standard Normal Cumulative Distribution.
+
*In <math>NORMSINV (Probability)</math>, where <math>Probability</math> is the probability value of the Standard Normal Cumulative Distribution.
 
*This function will return the result as error when  
 
*This function will return the result as error when  
  1.<math>prob</math> is non-numeric.
+
  1.Probability is non-numeric.
  2.<math>prob<0</math> or <math>prob>1</math>.
+
  2.Probability<0 or Probability>1.
  
 
==Examples==
 
==Examples==
 
#=NORMSINV(0.9999975333) = 4.567600
 
#=NORMSINV(0.9999975333) = 4.567600
 
#=NORMSINV(0.00241) = -2.818823592
 
#=NORMSINV(0.00241) = -2.818823592
#=NORMSINV(1) = Null
+
#=NORMSINV(1) = #N/A (PROBABILITY >0 (OR) PROBABILITY < 1)
 
#=NORMSINV(0.00001) = -4.264890794
 
#=NORMSINV(0.00001) = -4.264890794
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|F2rKy2cI8Ss|280|center|NORMSINV}}
  
 
==See Also==
 
==See Also==
Line 26: Line 31:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Normal_distribution Normal Distribution]
 
[http://en.wikipedia.org/wiki/Normal_distribution Normal Distribution]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 09:29, 2 June 2020

NORMSINV (Probability)


  • is the value of the Probability.
    • NORMSINV(),returns the inverse of the standard normal cumulative distribution.

Description

  • This function gives the inverse of the Standard Normal Cumulative Distribution.
  • In Normal Distribution formula, when the Mean is zero and the Standard Deviation is 1 then it is called Standard Normal Distribution.
  • If , then .
  • using the iterating method to find the value of .
  • Suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • In , where is the probability value of the Standard Normal Cumulative Distribution.
  • This function will return the result as error when
1.Probability is non-numeric.
2.Probability<0 or Probability>1.

Examples

  1. =NORMSINV(0.9999975333) = 4.567600
  2. =NORMSINV(0.00241) = -2.818823592
  3. =NORMSINV(1) = #N/A (PROBABILITY >0 (OR) PROBABILITY < 1)
  4. =NORMSINV(0.00001) = -4.264890794

Related Videos

NORMSINV

See Also

References

Normal Distribution