Difference between revisions of "Manuals/calci/PASCALTRIANGLE"

From ZCubes Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''PASCALTRIANGLE(r)'''</div><br/>
+
<div style="font-size:30px">'''PASCALTRIANGLE (Levels)'''</div><br/>
*<math>r</math>  is the row number.
+
*<math>Levels</math>  is the level number of the Pascal Triangle.
 +
**PASCALTRIANGLE(), is a triangle of numbers in which a row represents the coefficients of the binomial series.
  
 
==Description==
 
==Description==
 
*This function gives the Coefficients of the Pascal triangle.
 
*This function gives the Coefficients of the Pascal triangle.
*In <math>PASCALTRIANGLE(r)</math> , r is the row  number of the Pascal triangle.
+
*In <math>PASCALTRIANGLE(Levels)</math> , <math>Levels</math> is the level number of the Pascal triangle.
 
*Pascal triangle is the arrangement of numbers of the Binomial coefficients in a triangular shape.
 
*Pascal triangle is the arrangement of numbers of the Binomial coefficients in a triangular shape.
*It is started with the number 1 at the top in the 1st row.
+
*It is started with the number <math>1</math> at the top in the 1st row.
 
*Then from the 2nd row each number in the triangle is the sum of the two directly above it.
 
*Then from the 2nd row each number in the triangle is the sum of the two directly above it.
*The construction is related to the binomial coefficients by Pascal's rule is :                                 
+
*The construction is related to the Binomial Coefficients by Pascal's rule is :                                 
<math>(x+y)^n=\sum_{k=0}^n \binom{n}{k}x^{n-k} .y^k </math>.   where <math> \dbinom{n}{k}</math> is the binomial coefficient.
+
<math>(x+y)^n=\sum_{k=0}^n \binom{n}{k}x^{n-k} .y^k </math>.
*This function will return the result as error when the r <math> \le 0</math>.
+
where <math> \dbinom{n}{k}</math> is the binomial coefficient.
 +
*This function will return the result as error when <math> r \le 0</math>.
  
 
==Examples==
 
==Examples==
*1.PASCALTRIANGLE(1)=1
+
*1.=PASCALTRIANGLE(1)
*2.PASCALTRIANGLE(2)=1   
+
                  1
 +
*2.=PASCALTRIANGLE(2)
 +
                  1   
 
                   1      1
 
                   1      1
  
*3.PASCALTRIANGLE(3)=1     
+
*3.=PASCALTRIANGLE(3)
 +
                  1     
 
                   1      1
 
                   1      1
 
                   1      2        1
 
                   1      2        1
 
   
 
   
*4.PASCALTRIANGLE(0)=NULL
+
*4.=PASCALTRIANGLE(0) = NULL
  
 +
==Related Videos==
 +
 +
{{#ev:youtube|v9Evg2tBdRk|280|center|PASCAL'S TRIANGLE}}
  
 
==See Also==
 
==See Also==
 +
*[[Manuals/calci/BINOMDIST  | BINOMDIST ]]
 +
*[[Manuals/calci/Pascal Triangle Fun  | Pascal Triangle Fun Facts ]]
  
 
==References==
 
==References==
 
*  [http://www.mathsisfun.com/pascals-triangle.html Pascal's Triangle  ]
 
*  [http://www.mathsisfun.com/pascals-triangle.html Pascal's Triangle  ]
 
 
'''PASCALTRIANGLE'''(level)
 
 
where
 
 
'''level''' is any real number
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
PASCALTRIANGLE function returns pascal's triangle for the given level.
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
PASCALTRIANGLE returns NaN if level is not a real number.
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
PASCALTRIANGLE
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
Lets see an example in (Column2Row1)
 
 
UNIQ9eec20026ff870ff-nowiki-00000002-QINU
 
  
Returns 1,1,1,1,2,1 for PASCALTRIANGLE(3)
 
  
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
 
|+ Default Calci
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="1      1 " | 3
 
| class="sshl_f" | 1,1,1,1,2,1
 
| class="                    sshl_f" |
 
| class="sshl_f  sshl_f    " |
 
|- class="even"
 
| class="  " | Row2
 
|
 
| class=" sshl_f SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
| class=" sshl_f" |
 
| class="sshl_f  sshl_f    " |
 
|- class="odd"
 
| Row3
 
|
 
| class=" sshl_f" |
 
| class="sshl_f    " |
 
| class="sshl_f    " |
 
|- class="even"
 
| Row4
 
|
 
| class=" sshl_f" |
 
| class="sshl_f    " |
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
| class="  " |
 
| class="sshl_f    " |
 
| class="  " |
 
|- class="even"
 
| Row6
 
|
 
|
 
| class="sshl_f    " |
 
| class="  " |
 
|}
 
  
{|
+
*[[Z_API_Functions | List of Main Z Functions]]
| <span align="left">[[Image:calci1.gif]]</span>
 
|
 
|
 
[[Image:bold.gif]]
 
|
 
[[Image:italic.gif]]
 
|
 
[[Image:normal.gif]]
 
|
 
[[Image:underline.gif]]
 
|
 
[[Image:border.gif]]
 
|
 
[[Image:numbers.gif]]
 
|
 
[[Image:sort.gif]]
 
|
 
[[Image:formatcells.gif]]
 
|
 
[[Image:graphs.gif]]
 
| $
 
|}
 
  
</div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 16:34, 6 August 2020

PASCALTRIANGLE (Levels)


  • is the level number of the Pascal Triangle.
    • PASCALTRIANGLE(), is a triangle of numbers in which a row represents the coefficients of the binomial series.

Description

  • This function gives the Coefficients of the Pascal triangle.
  • In , is the level number of the Pascal triangle.
  • Pascal triangle is the arrangement of numbers of the Binomial coefficients in a triangular shape.
  • It is started with the number at the top in the 1st row.
  • Then from the 2nd row each number in the triangle is the sum of the two directly above it.
  • The construction is related to the Binomial Coefficients by Pascal's rule is :

. where is the binomial coefficient.

  • This function will return the result as error when .

Examples

  • 1.=PASCALTRIANGLE(1)
                 1
  • 2.=PASCALTRIANGLE(2)
                 1   
                 1       1
  • 3.=PASCALTRIANGLE(3)
                 1    
                 1       1
                 1       2         1

  • 4.=PASCALTRIANGLE(0) = NULL

Related Videos

PASCAL'S TRIANGLE

See Also

References