Difference between revisions of "Manuals/calci/GAMMALN"

From ZCubes Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''GAMMALN(x)'''</div><br/>
 
<div style="font-size:30px">'''GAMMALN(x)'''</div><br/>
*<math>x</math> is the number
+
*<math>x</math> is the number.
 +
**GAMMALN(), returns the natural logarithm of the Gamma Function.
 +
 
 
==Description==
 
==Description==
 
*This function gives the natural logarithm of the absolute value of the Gamma Function.
 
*This function gives the natural logarithm of the absolute value of the Gamma Function.
 
*The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
 
*The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
*This is often called the ‘Polygamma’ function.
+
*This is often called the Polygamma function.
 
*Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.  
 
*Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.  
*Normally the number <math>e</math> to the power <math>GAMMALN(x)</math>, where <math>x</math> is an integer, is same as <math>(x-1)!</math>.
+
*Normally the number <math>e to the power {GAMMALN(x)}</math>, where <math>x</math> is an integer, is same as <math>(x-1)!</math>.
:<math>GAMMALN=LN(GAMMA(x))</math>,
+
:<math>GAMMALN=LN( \Gamma(x)</math>,
 
where
 
where
: <math>GAMMA(x) = \int\limits_{0}^{\infty} t^{x-1} e^{-t} dt</math>  
+
: <math> \Gamma(x) = \int\limits_{0}^{\infty} t^{x-1} e^{-t} dt</math>  
 
it is for all complex numbers except the negative integers and zero.
 
it is for all complex numbers except the negative integers and zero.
 
*This function will give the result as error when
 
*This function will give the result as error when
Line 18: Line 20:
 
#GAMMALN(42) = 114.03421178146174
 
#GAMMALN(42) = 114.03421178146174
 
#GAMMALN(1) = 0.00018319639111644828(calci)
 
#GAMMALN(1) = 0.00018319639111644828(calci)
#GAMMALN(-10) = NAN, because <math> x<0 </math>
+
#GAMMALN(-10) = #N/A (X <= 0)
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
 +
 
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/GAMMADIST | GAMMADIST ]]
 
*[[Manuals/calci/GAMMADIST | GAMMADIST ]]
*[[Manuals/FACT  | FACT]]
+
*[[Manuals/calci/FACT  | FACT]]
 
*[[Manuals/calci/LN  | LN]]
 
*[[Manuals/calci/LN  | LN]]
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Gamma_distribution| Gamma Distribution]*
+
[http://en.wikipedia.org/wiki/Gamma_distribution Gamma Distribution]*
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:58, 12 August 2020

GAMMALN(x)


  • is the number.
    • GAMMALN(), returns the natural logarithm of the Gamma Function.

Description

  • This function gives the natural logarithm of the absolute value of the Gamma Function.
  • The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
  • This is often called the Polygamma function.
  • Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.
  • Normally the number , where is an integer, is same as .
,

where

it is for all complex numbers except the negative integers and zero.

  • This function will give the result as error when
 is non-numeric and .

Examples

  1. GAMMALN(6) = 4.787491744416229
  2. GAMMALN(42) = 114.03421178146174
  3. GAMMALN(1) = 0.00018319639111644828(calci)
  4. GAMMALN(-10) = #N/A (X <= 0)

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution*