Difference between revisions of "Manuals/calci/GAMMALN"

From ZCubes Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''GAMMALN(x)'''</div><br/>
 
<div style="font-size:30px">'''GAMMALN(x)'''</div><br/>
*<math>x</math> is the number
+
*<math>x</math> is the number.
 +
**GAMMALN(), returns the natural logarithm of the Gamma Function.
 +
 
 
==Description==
 
==Description==
 
*This function gives the natural logarithm of the absolute value of the Gamma Function.
 
*This function gives the natural logarithm of the absolute value of the Gamma Function.
Line 18: Line 20:
 
#GAMMALN(42) = 114.03421178146174
 
#GAMMALN(42) = 114.03421178146174
 
#GAMMALN(1) = 0.00018319639111644828(calci)
 
#GAMMALN(1) = 0.00018319639111644828(calci)
#GAMMALN(-10) = NAN, because <math> x<0 </math>
+
#GAMMALN(-10) = #N/A (X <= 0)
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
 +
 
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/GAMMADIST | GAMMADIST ]]
 
*[[Manuals/calci/GAMMADIST | GAMMADIST ]]
Line 25: Line 32:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Gamma_distribution| Gamma Distribution]*
+
[http://en.wikipedia.org/wiki/Gamma_distribution Gamma Distribution]*
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:58, 12 August 2020

GAMMALN(x)


  • is the number.
    • GAMMALN(), returns the natural logarithm of the Gamma Function.

Description

  • This function gives the natural logarithm of the absolute value of the Gamma Function.
  • The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
  • This is often called the Polygamma function.
  • Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.
  • Normally the number , where is an integer, is same as .
,

where

it is for all complex numbers except the negative integers and zero.

  • This function will give the result as error when
 is non-numeric and .

Examples

  1. GAMMALN(6) = 4.787491744416229
  2. GAMMALN(42) = 114.03421178146174
  3. GAMMALN(1) = 0.00018319639111644828(calci)
  4. GAMMALN(-10) = #N/A (X <= 0)

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution*