Difference between revisions of "Manuals/calci/GAMMALN"
Jump to navigation
Jump to search
Line 20: | Line 20: | ||
#GAMMALN(42) = 114.03421178146174 | #GAMMALN(42) = 114.03421178146174 | ||
#GAMMALN(1) = 0.00018319639111644828(calci) | #GAMMALN(1) = 0.00018319639111644828(calci) | ||
− | #GAMMALN(-10) = | + | #GAMMALN(-10) = #N/A (X <= 0) |
==Related Videos== | ==Related Videos== |
Latest revision as of 03:58, 12 August 2020
GAMMALN(x)
- is the number.
- GAMMALN(), returns the natural logarithm of the Gamma Function.
Description
- This function gives the natural logarithm of the absolute value of the Gamma Function.
- The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
- This is often called the Polygamma function.
- Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.
- Normally the number , where is an integer, is same as .
- ,
where
it is for all complex numbers except the negative integers and zero.
- This function will give the result as error when
is non-numeric and .
Examples
- GAMMALN(6) = 4.787491744416229
- GAMMALN(42) = 114.03421178146174
- GAMMALN(1) = 0.00018319639111644828(calci)
- GAMMALN(-10) = #N/A (X <= 0)
Related Videos
See Also
References