Difference between revisions of "Manuals/calci/GAMMALN"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font size="3"><font face="Times New Roman">'''GAMMALN'''('''x''')</font></font> <font size="3"><font face="Times ...")
 
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''GAMMALN(x)'''</div><br/>
 +
*<math>x</math> is the number.
 +
**GAMMALN(), returns the natural logarithm of the Gamma Function.
  
<font size="3"><font face="Times New Roman">'''GAMMALN'''('''x''')</font></font>
+
==Description==
 +
*This function gives the natural logarithm of the absolute value of the Gamma Function.
 +
*The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
 +
*This is often called the Polygamma function.
 +
*Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.
 +
*Normally the number <math>e  to the power {GAMMALN(x)}</math>, where <math>x</math> is an integer, is same as <math>(x-1)!</math>.
 +
:<math>GAMMALN=LN( \Gamma(x)</math>,
 +
where
 +
: <math> \Gamma(x) = \int\limits_{0}^{\infty} t^{x-1} e^{-t} dt</math>
 +
it is for all complex numbers except the negative integers and zero.
 +
*This function will give the result as error when
 +
<math>x</math> is non-numeric and <math>x \le 0</math>.
  
<font size="3"><font face="Times New Roman">Where X is to calculate GAMMALN.</font></font>
+
==Examples==
 +
#GAMMALN(6) = 4.787491744416229
 +
#GAMMALN(42) = 114.03421178146174
 +
#GAMMALN(1) = 0.00018319639111644828(calci)
 +
#GAMMALN(-10) = #N/A (X <= 0)
  
</div>
+
==Related Videos==
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
  
<font size="3"><font face="Times New Roman">It is the natural logarithm of the gamma function.</font></font>
+
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/GAMMADIST | GAMMADIST ]]
<div id="7SpaceContent" class="zcontent" align="left">
+
*[[Manuals/calci/FACT  | FACT]]
 +
*[[Manuals/calci/LN  | LN]]
  
<font size="3">·</font>        <font size="3"><font face="Times New Roman">x should be numeric otherwise GAMMALAN returns infinity.</font></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Gamma_distribution  Gamma Distribution]*
  
<font size="3">·</font>        <font size="3"><font face="Times New Roman">When x is less than or equal to 0, GAMMALN returns error value. </font></font>
 
  
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">GAMMALN</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">i.e. = BETADIST (3, 5, 9,1,6 ) is 0.647</div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
<font size="3"><font face="Times New Roman">Let’s see an example </font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
<font size="3">GAMMALAN (x)</font>
+
*[[ Z3 Z3 home ]]
 
 
<font size="3"><font face="Times New Roman"><nowiki>=GAMMALN (5) is 3.178</nowiki></font></font>
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="   " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 5
 
| class="sshl_f" | 3.178054
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="SelectTD" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Latest revision as of 03:58, 12 August 2020

GAMMALN(x)


  • is the number.
    • GAMMALN(), returns the natural logarithm of the Gamma Function.

Description

  • This function gives the natural logarithm of the absolute value of the Gamma Function.
  • The functions Digamma and Trigamma are the first and second derivatives of the logarithm of the Gamma Function.
  • This is often called the Polygamma function.
  • Gamma, Lgamma, Digamma and Trigamma functions are internal generic primitive functions.
  • Normally the number , where is an integer, is same as .
,

where

it is for all complex numbers except the negative integers and zero.

  • This function will give the result as error when
 is non-numeric and .

Examples

  1. GAMMALN(6) = 4.787491744416229
  2. GAMMALN(42) = 114.03421178146174
  3. GAMMALN(1) = 0.00018319639111644828(calci)
  4. GAMMALN(-10) = #N/A (X <= 0)

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution*