Difference between revisions of "Manuals/calci/BESSELJ"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ'''</font></font></font><font color="#484...")
 
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELJ(x,n)'''</div><br/>
 +
*<math>x</math> is the value to evaluate the function
 +
*<math>n</math> is the order of the Bessel function and is an integer.
 +
**BESSELJ(), returns the modified Bessel Function Jn(x).
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'v' is the value at which to evaluate the function and 'o' is the order of the Bessel function. </font></font></font>
+
==Description==
 +
*This function gives the value of the modified Bessel function.
 +
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as: <math>x^2\frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>
 +
where <math>\alpha</math> is the arbitrary Complex Number.
 +
*But in most of the cases <math>\alpha</math> is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order n.
 +
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>
 +
*The Bessel function of the first kind of order can be expressed as:
 +
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math>
 +
*where <math>\Gamma(n+k+1)=(n+k)!</math> or 
 +
*<math>\int\limits_{0}^{\infty} x^{n+k}*e^{-x} dx</math> is the Gamma Function.
 +
*This function will give result as error when
 +
1. <math>x</math> or <math>n</math> is non numeric
 +
2. <math>n < 0</math>, because <math>n</math> is the order of the function.
  
</div>
+
==ZOS==
----
+
*The syntax is to calculate BESSELJ in ZOS is <math>BESSELJ(x,n)</math>.
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the Bessel function.</font></font></font></div>
+
**<math>x</math> is the value to evaluate the function
----
+
**<math>n</math> is the order of the Bessel function and is an integer.
<div id="7SpaceContent" class="zcontent" align="left"> 
+
*For e.g.,BESSELJ(0.789..0.901..0.025,5)
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELJ returns the error value, when 'v' and 'o' are nonnumeric.</font></font></font>
+
==Examples==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">o should be grater than 1</font></font></font>
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The o-th order Bessel function of the variable 'v' is: </font></font></font>
 
  
<font color="#484848" face="Arial"></font>
+
#BESSELJ(2,3) = 0.12894324997562717
 +
#BESSELJ(7,2) = -0.3014172238218034
 +
#BESSELJ(5,1) = -0.3275791385663632
  
<font color="#484848" face="Arial"></font>
+
==Related Videos==
  
<font color="#484848" face="Arial"></font>
+
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where:</font></font></font>
+
==See Also==
 +
*[[Manuals/calci/BESSELI  | BESSELI ]]
 +
*[[Manuals/calci/BESSELK  | BESSELK ]]
 +
*[[Manuals/calci/BESSELY  | BESSELY ]]
  
<font color="#484848" face="Arial"></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
  
<font color="#484848" face="Arial"></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">is the Gamma function.</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where v = x and o = n</font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
</div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
BESSELJ
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ(v, o)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELJ(C1R1,C2R2)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=BESSELJ(1.5, 2) is 0.2321</nowiki>'''</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 1.5
 
| class="sshl_f" | 0.232088
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 2
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                      " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:22.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/22.JPG]]</div></div>
 
----
 
<div id="13SpaceContent" class="zcontent" align="left"><div>[[Image:21.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/21.JPG]]</div></div>
 
----
 

Latest revision as of 07:02, 29 September 2021

BESSELJ(x,n)


  • is the value to evaluate the function
  • is the order of the Bessel function and is an integer.
    • BESSELJ(), returns the modified Bessel Function Jn(x).

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary Complex Number.

  • But in most of the cases is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • Bessel functions of the first kind, denoted as
  • The Bessel function of the first kind of order can be expressed as:

  • where or
  • is the Gamma Function.
  • This function will give result as error when
1.  or  is non numeric
2. , because  is the order of the function.

ZOS

  • The syntax is to calculate BESSELJ in ZOS is .
    • is the value to evaluate the function
    • is the order of the Bessel function and is an integer.
  • For e.g.,BESSELJ(0.789..0.901..0.025,5)

Examples

  1. BESSELJ(2,3) = 0.12894324997562717
  2. BESSELJ(7,2) = -0.3014172238218034
  3. BESSELJ(5,1) = -0.3275791385663632

Related Videos

BESSEL Equation

See Also

References

Bessel Function