Difference between revisions of "Manuals/calci/BESSELK"

From ZCubes Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''BESSELK(x,n)'''</div><br/>
 
<div style="font-size:30px">'''BESSELK(x,n)'''</div><br/>
*Where <math>x</math> is the value at which to evaluate the function
+
*Where <math>x</math> is the value at which to evaluate the function.
*<math>n</math> is the integer which is the order of the Bessel Function
+
*<math>n</math> is the integer which is the order of the Bessel Function.
 +
**Returns the modified Bessel Function Kn(x).
 +
 
 
==Description==
 
==Description==
 
*This function gives the value of the modified Bessel function when the arguments are purely imaginary.
 
*This function gives the value of the modified Bessel function when the arguments are purely imaginary.
Line 7: Line 9:
 
*Bessel's Differential Equation is defined as:
 
*Bessel's Differential Equation is defined as:
 
<math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
 
<math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
where <math>\alpha</math> is the Arbitrary Complex number.
+
where <math>\alpha</math> is the arbitrary Complex number.
 
*But in most of the cases α is the non-negative real number.
 
*But in most of the cases α is the non-negative real number.
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.  
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.  
 
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>.  
 
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>.  
 
*The Bessel function of the first kind of order can be expressed as:
 
*The Bessel function of the first kind of order can be expressed as:
:<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k}{k!\Gamma(n+k+1)}.(\frac{x}{2})^{n+2k}</math>
+
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math>
 
 
 
*The Bessel function of the second kind  <math>Y_n(x)</math>.
 
*The Bessel function of the second kind  <math>Y_n(x)</math>.
 
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Y_n(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}</math>
 
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Y_n(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}</math>
Line 19: Line 20:
 
where: <math>I_n(x)=i^{-n}J_n(ix)</math>  
 
where: <math>I_n(x)=i^{-n}J_n(ix)</math>  
 
and  
 
and  
:<math>K_n(x)=\lim_{p \to n}\frac{\pi}{2} \frac{I_{-p}(x)-I_p(x)}{Sin(p\pi)}</math>
+
:<math>K_n(x)=\lim_{p \to n}\frac{\pi}{2}\left[ \frac{I_{-p}(x)-I_p(x)}{Sin(p\pi)}\right]</math>
 
are the modified Bessel functions of the first and second kind respectively.
 
are the modified Bessel functions of the first and second kind respectively.
 
*This function will give the result as error when:
 
*This function will give the result as error when:
Line 27: Line 28:
 
==Examples==
 
==Examples==
  
#BESSELK(5,2) = 0.0040446134
+
#BESSELK(5,2) = 0.005308943735243616
#BESSELK(0.2,4) = 29900.2492
+
#BESSELK(0.2,4) = 29900.24920401114
#BESSELK(10,1) = 0.000155369
+
#BESSELK(10,1) = 0.00001864877394684907
#BESSELK(2,-1) = NAN
+
#BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
  
 
==See Also==
 
==See Also==
Line 38: Line 43:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
+
[http://en.wikipedia.org/wiki/Bessel_function Bessel Function]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 07:04, 29 September 2021

BESSELK(x,n)


  • Where is the value at which to evaluate the function.
  • is the integer which is the order of the Bessel Function.
    • Returns the modified Bessel Function Kn(x).

Description

  • This function gives the value of the modified Bessel function when the arguments are purely imaginary.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary Complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The Bessel function of the first kind of order can be expressed as:

  • The Bessel function of the second kind .
  • The Bessel function of the 2nd kind of order can be expressed as:
  • So the form of the general solution is .

where: and

are the modified Bessel functions of the first and second kind respectively.

  • This function will give the result as error when:
1.  or  is non numeric 
2. , because  is the order of the function.

Examples

  1. BESSELK(5,2) = 0.005308943735243616
  2. BESSELK(0.2,4) = 29900.24920401114
  3. BESSELK(10,1) = 0.00001864877394684907
  4. BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)

Related Videos

BESSEL Equation

See Also

References

Bessel Function