Difference between revisions of "Manuals/calci/BESSELK"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font><font color="#48...")
 
 
(29 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELK(x,n)'''</div><br/>
 +
*Where <math>x</math> is the value at which to evaluate the function.
 +
*<math>n</math> is the integer which is the order of the Bessel Function.
 +
**Returns the modified Bessel Function Kn(x).
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'v' is the value and 'o' is the order of the function. </font></font></font>
+
==Description==
 +
*This function gives the value of the modified Bessel function when the arguments are purely imaginary.
 +
*Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as:
 +
<math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
 +
where <math>\alpha</math> is the arbitrary Complex number.
 +
*But in most of the cases α is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 +
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>.
 +
*The Bessel function of the first kind of order can be expressed as:
 +
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math>
 +
*The Bessel function of the second kind  <math>Y_n(x)</math>.
 +
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Y_n(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}</math>
 +
*So the form of the general solution is <math>y(x)=c1 I_n(x)+c2 K_n(x)</math>.
 +
where: <math>I_n(x)=i^{-n}J_n(ix)</math>
 +
and  
 +
:<math>K_n(x)=\lim_{p \to n}\frac{\pi}{2}\left[ \frac{I_{-p}(x)-I_p(x)}{Sin(p\pi)}\right]</math>
 +
are the modified Bessel functions of the first and second kind respectively.
 +
*This function will give the result as error when:
 +
1. <math>x</math> or <math>n</math> is non numeric
 +
2. <math>n<0</math>, because <math>n</math> is the order of the function.
  
</div>
+
==Examples==
----
 
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the modified Bessel function, which is calculated for imaginary arguments.</font></font></font></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELI returns the error value when 'v' and 'o' are nonnumeric. </font></font></font>
+
#BESSELK(5,2) = 0.005308943735243616
 +
#BESSELK(0.2,4) = 29900.24920401114
 +
#BESSELK(10,1) = 0.00001864877394684907
 +
#BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)
  
<font color="#484848" face="Arial"></font>
+
==Related Videos==
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">'0' should be grater than 1</font></font></font>
+
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/BESSELI  | BESSELI ]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
*[[Manuals/calci/BESSELY  | BESSELY ]]
 +
*[[Manuals/calci/BESSELJ  | BESSELJ ]]
  
BESSELK
+
==References==
 +
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
  
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
  
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELK(v, o)</font></font></font>]
 
  
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font>][javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font>][javascript:ToggleDiv('divExpCollAsst_4') <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''C1R1, C2R2)'''</font></font></font>]
+
*[[Z_API_Functions | List of Main Z Functions]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=BESSELK(2.5, 1) is 0.0739</nowiki>'''</font></font></font>
+
*[[ Z3 |   Z3 home ]]
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 2.5
 
| class="sshl_f" | 0.073891
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 1
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                    " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:20.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/20.JPG]]</div></div>
 
----
 

Latest revision as of 07:04, 29 September 2021

BESSELK(x,n)


  • Where is the value at which to evaluate the function.
  • is the integer which is the order of the Bessel Function.
    • Returns the modified Bessel Function Kn(x).

Description

  • This function gives the value of the modified Bessel function when the arguments are purely imaginary.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary Complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The Bessel function of the first kind of order can be expressed as:

  • The Bessel function of the second kind .
  • The Bessel function of the 2nd kind of order can be expressed as:
  • So the form of the general solution is .

where: and

are the modified Bessel functions of the first and second kind respectively.

  • This function will give the result as error when:
1.  or  is non numeric 
2. , because  is the order of the function.

Examples

  1. BESSELK(5,2) = 0.005308943735243616
  2. BESSELK(0.2,4) = 29900.24920401114
  3. BESSELK(10,1) = 0.00001864877394684907
  4. BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)

Related Videos

BESSEL Equation

See Also

References

Bessel Function