Difference between revisions of "Manuals/calci/BESSELK"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELK'''</font></font></font><font color="#48...") |
|||
(29 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''BESSELK(x,n)'''</div><br/> |
+ | *Where <math>x</math> is the value at which to evaluate the function. | ||
+ | *<math>n</math> is the integer which is the order of the Bessel Function. | ||
+ | **Returns the modified Bessel Function Kn(x). | ||
− | < | + | ==Description== |
+ | *This function gives the value of the modified Bessel function when the arguments are purely imaginary. | ||
+ | *Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates. | ||
+ | *Bessel's Differential Equation is defined as: | ||
+ | <math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math> | ||
+ | where <math>\alpha</math> is the arbitrary Complex number. | ||
+ | *But in most of the cases α is the non-negative real number. | ||
+ | *The solutions of this equation are called Bessel Functions of order <math>n</math>. | ||
+ | *Bessel functions of the first kind, denoted as <math>J_n(x)</math>. | ||
+ | *The Bessel function of the first kind of order can be expressed as: | ||
+ | <math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math> | ||
+ | *The Bessel function of the second kind <math>Y_n(x)</math>. | ||
+ | *The Bessel function of the 2nd kind of order can be expressed as: <math>Y_n(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}</math> | ||
+ | *So the form of the general solution is <math>y(x)=c1 I_n(x)+c2 K_n(x)</math>. | ||
+ | where: <math>I_n(x)=i^{-n}J_n(ix)</math> | ||
+ | and | ||
+ | :<math>K_n(x)=\lim_{p \to n}\frac{\pi}{2}\left[ \frac{I_{-p}(x)-I_p(x)}{Sin(p\pi)}\right]</math> | ||
+ | are the modified Bessel functions of the first and second kind respectively. | ||
+ | *This function will give the result as error when: | ||
+ | 1. <math>x</math> or <math>n</math> is non numeric | ||
+ | 2. <math>n<0</math>, because <math>n</math> is the order of the function. | ||
− | + | ==Examples== | |
− | |||
− | |||
− | |||
− | |||
− | + | #BESSELK(5,2) = 0.005308943735243616 | |
+ | #BESSELK(0.2,4) = 29900.24920401114 | ||
+ | #BESSELK(10,1) = 0.00001864877394684907 | ||
+ | #BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0) | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}} | |
− | + | ==See Also== | |
− | + | *[[Manuals/calci/BESSELI | BESSELI ]] | |
− | + | *[[Manuals/calci/BESSELY | BESSELY ]] | |
+ | *[[Manuals/calci/BESSELJ | BESSELJ ]] | ||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/Bessel_function Bessel Function] | ||
− | |||
− | |||
− | |||
− | |||
− | [ | + | *[[Z_API_Functions | List of Main Z Functions]] |
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 07:04, 29 September 2021
BESSELK(x,n)
- Where is the value at which to evaluate the function.
- is the integer which is the order of the Bessel Function.
- Returns the modified Bessel Function Kn(x).
Description
- This function gives the value of the modified Bessel function when the arguments are purely imaginary.
- Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
- Bessel's Differential Equation is defined as:
where is the arbitrary Complex number.
- But in most of the cases α is the non-negative real number.
- The solutions of this equation are called Bessel Functions of order .
- Bessel functions of the first kind, denoted as .
- The Bessel function of the first kind of order can be expressed as:
- The Bessel function of the second kind .
- The Bessel function of the 2nd kind of order can be expressed as:
- So the form of the general solution is .
where: and
are the modified Bessel functions of the first and second kind respectively.
- This function will give the result as error when:
1. or is non numeric 2. , because is the order of the function.
Examples
- BESSELK(5,2) = 0.005308943735243616
- BESSELK(0.2,4) = 29900.24920401114
- BESSELK(10,1) = 0.00001864877394684907
- BESSELK(2,-1) = #N/A (ORDER OF FUNCTION < 0)
Related Videos
See Also
References