Difference between revisions of "Manuals/calci/DSIN"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''DCOSEC(x)'''</div><br/>
+
<div style="font-size:30px">'''DSIN(x)'''</div><br/>
 
* where '''x''' is the angle in Radians
 
* where '''x''' is the angle in Radians
 
* by default Calci use Radian as angle
 
* by default Calci use Radian as angle
[[Manuals/calci/COSEC| COSEC]] can be used if the angle is in Radians.  
+
[[Manuals/calci/SIN| SIN]] can be used if the angle is in Radians.  
  
 
==Description==
 
==Description==
 
*This function is used to obtain the Cosecant value of 'x' in degrees.<br/>
 
*This function is used to obtain the Cosecant value of 'x' in degrees.<br/>
*It is the reciprocal of SIN function i.e, '''COSEC(x) = 1 / SIN(x)'''.<br/>
+
*It is the reciprocal of SIN function i.e, '''SIN(x) = 1 / COSEC(x)'''.<br/>
*In a right angled triangle '''COSEC(x) = Hypotenuse / Opposite side'''.<br/>
+
*In a right angled triangle '''SIN(x) = Opposite side / Hypotenuse'''.<br/>
*To obtain the value in Radians multiply with PI()/180 or use COSEC function COSEC(X)
+
*To obtain the value in Radians multiply with PI()/180 or use SIN function SIN(X)
*DCOSEC returns NaN if 'x' is not real
+
*DSIN returns NaN if 'x' is not real
 
The angle can be a single value or any complex array of values.
 
The angle can be a single value or any complex array of values.
  
The following example shows how DCOSEC is applied to an array of numbers containing numbers 1..10.
+
The following example shows how DSIN is applied to an array of numbers containing numbers 1..10.
*Type =1..10@DCOSEC in Calci
+
*Type =1..10@DSIN in Calci
*Type =1..10@DCOSEC or 1..10@DCOSEC in ZOS
+
*Type =1..10@DSIN or 1..10@DSIN in ZOS
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Number !! DCOSEC
+
! Number !! DSIN
 
|-
 
|-
 
| 1 || 57.2986884985501
 
| 1 || 57.2986884985501
Line 42: Line 42:
  
 
== Examples ==
 
== Examples ==
'''DCOSEC(x)'''
+
'''DSIN(x)'''
 
*'''x  ''' is the angle in Radians.
 
*'''x  ''' is the angle in Radians.
* Result shows DCOSEC(abc)= NAN
+
* Result shows DSIN(abc)= NAN
  
 
{|id="TABLE1" class="SpreadSheet blue"
 
{|id="TABLE1" class="SpreadSheet blue"
  
 
|- class="even"
 
|- class="even"
|'''DCOSEC(Radian)'''
+
|'''DSIN(Radian)'''
 
|'''Value'''
 
|'''Value'''
  
 
|- class="odd"
 
|- class="odd"
| DCOSEC(0)
+
| DSIN(0)
 
| infinity
 
| infinity
  
 
|- class="even"
 
|- class="even"
| DCOSEC(1)
+
| DSIN(1)
 
| 57.298688498550185
 
| 57.298688498550185
  
 
|- class="odd"
 
|- class="odd"
| DCOSEC(90)
+
| DSIN(90)
 
| 1
 
| 1
  
Line 68: Line 68:
 
==See Also==
 
==See Also==
  
*[[Manuals/calci/COSEC | COSEC]]
 
 
*[[Manuals/calci/SIN | SIN]]
 
*[[Manuals/calci/SIN | SIN]]
 
*[[Manuals/calci/ASIN| ASIN]]
 
*[[Manuals/calci/ASIN| ASIN]]
 +
*[[Manuals/calci/COSEC | COSEC]]
 +
*[[Manuals/calci/DCOSEC | DCOSEC]]
 +
  
 
==References==
 
==References==
  
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]

Revision as of 00:00, 4 November 2013

DSIN(x)


  • where x is the angle in Radians
  • by default Calci use Radian as angle

SIN can be used if the angle is in Radians.

Description

  • This function is used to obtain the Cosecant value of 'x' in degrees.
  • It is the reciprocal of SIN function i.e, SIN(x) = 1 / COSEC(x).
  • In a right angled triangle SIN(x) = Opposite side / Hypotenuse.
  • To obtain the value in Radians multiply with PI()/180 or use SIN function SIN(X)
  • DSIN returns NaN if 'x' is not real

The angle can be a single value or any complex array of values.

The following example shows how DSIN is applied to an array of numbers containing numbers 1..10.

  • Type =1..10@DSIN in Calci
  • Type =1..10@DSIN or 1..10@DSIN in ZOS
Number DSIN
1 57.2986884985501
2 28.65370835
3 19.10732261
4 14.33558703
5 11.47371325
6 9.566772234
7 8.205509048
8 7.185296534
9 6.392453221
10 5.758770483

Examples

DSIN(x)

  • x   is the angle in Radians.
  • Result shows DSIN(abc)= NAN
DSIN(Radian) Value
DSIN(0) infinity
DSIN(1) 57.298688498550185
DSIN(90) 1

See Also


References