Difference between revisions of "Manuals/calci/ASINH"

From ZCubes Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''ASINH(z)'''</div><br/>
+
<div style="font-size:30px">'''ASINH(Number)'''</div><br/>
* where z is any real number
+
* <math>Number</math> is any real number.
 +
**ASINH() returns the inverse hyperbolic sine of a number.
 +
 
 
==Description==
 
==Description==
  
 
*This function gives the Inverse Hyperbolic Sine of a number.  
 
*This function gives the Inverse Hyperbolic Sine of a number.  
 
*Here 'z' is any real number.  
 
*Here 'z' is any real number.  
*Inverse Hyperbolic Sine of a number is defined as <math> Asinh(z) = loge(z +\sqrt{z^2 + 1})</math>
+
*Inverse Hyperbolic Sine of a number is defined as <math> Asinh(z) = \log_e(z +\sqrt{z^2 + 1})</math>
*Also ASINH(SINH(z))=z
+
*Also <math>ASinh(Sinh(z))=z</math>
 
*ASINH(-z) = -ASINH(z)
 
*ASINH(-z) = -ASINH(z)
  
Line 17: Line 19:
 
|- class="even"
 
|- class="even"
 
|'''ASINH(z)'''
 
|'''ASINH(z)'''
|'''Value(Radian)'''
+
|'''Value'''
  
 
|- class="odd"
 
|- class="odd"
Line 31: Line 33:
 
| -5.192987713658952
 
| -5.192987713658952
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|AQT2uHlyjEs|280|center|Inverse Hyperbolic SIN}}
  
 
==See Also==
 
==See Also==
Line 43: Line 49:
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 17:31, 13 August 2018

ASINH(Number)


  • is any real number.
    • ASINH() returns the inverse hyperbolic sine of a number.

Description

  • This function gives the Inverse Hyperbolic Sine of a number.
  • Here 'z' is any real number.
  • Inverse Hyperbolic Sine of a number is defined as
  • Also
  • ASINH(-z) = -ASINH(z)

Examples

ASINH(z)

  • z is any real number.
ASINH(z) Value
ASINH(2) 1.44363547517881
ASINH(45) 4.499933104264103
ASINH(-90) -5.192987713658952

Related Videos

Inverse Hyperbolic SIN

See Also

References