Difference between revisions of "Manuals/calci/BESSELJ"

From ZCubes Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''BESSELJ(x,n)'''</div><br/>
 
<div style="font-size:30px">'''BESSELJ(x,n)'''</div><br/>
 
*<math>x</math> is the value to evaluate the function
 
*<math>x</math> is the value to evaluate the function
*<math>n</math> is the order of the Bessel function and is an integer
+
*<math>n</math> is the order of the Bessel function and is an integer.
 +
**BESSELJ(), returns the modified Bessel Function Jn(x).
 +
 
 
==Description==
 
==Description==
 
*This function gives the value of the modified Bessel function.
 
*This function gives the value of the modified Bessel function.
 
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 
*Bessel's Differential Equation is defined as: <math>x^2\frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>
 
*Bessel's Differential Equation is defined as: <math>x^2\frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>
where <math>\alpha</math> is the Arbitrary Complex Number.
+
where <math>\alpha</math> is the arbitrary Complex Number.
 
*But in most of the cases <math>\alpha</math> is the non-negative real number.
 
*But in most of the cases <math>\alpha</math> is the non-negative real number.
 
*The solutions of this equation are called Bessel Functions of order n.  
 
*The solutions of this equation are called Bessel Functions of order n.  
 
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>
 
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>
 
*The Bessel function of the first kind of order can be expressed as:
 
*The Bessel function of the first kind of order can be expressed as:
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k}{k!\Gamma(n+k+1)}*(\frac{x}{2})^{n+2k}</math>
+
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math>
 
*where <math>\Gamma(n+k+1)=(n+k)!</math> or   
 
*where <math>\Gamma(n+k+1)=(n+k)!</math> or   
 
*<math>\int\limits_{0}^{\infty} x^{n+k}*e^{-x} dx</math> is the Gamma Function.
 
*<math>\int\limits_{0}^{\infty} x^{n+k}*e^{-x} dx</math> is the Gamma Function.
 
*This function will give result as error when  
 
*This function will give result as error when  
 
  1. <math>x</math> or <math>n</math> is non numeric
 
  1. <math>x</math> or <math>n</math> is non numeric
  2. <math>n < 0</math>, because <math>n</math> is the order of the function
+
  2. <math>n < 0</math>, because <math>n</math> is the order of the function.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate BESSELJ in ZOS is <math>BESSELJ(x,n)</math>.
 +
**<math>x</math> is the value to evaluate the function
 +
**<math>n</math> is the order of the Bessel function and is an integer.
 +
*For e.g.,BESSELJ(0.789..0.901..0.025,5)
  
 
==Examples==
 
==Examples==
  
#BESSELJ(2,3) = 0.12894325(EXCEL)Jn(x) = 0.10728467204(calci)J1(x)0.5767248079(Actual)J1(x)
+
#BESSELJ(2,3) = 0.12894324997562717
#BESSELJ(7,2) = -0.301417224(EXCEL)Jn(x) = NAN(calci) = -0.0046828257(Actual)J1(x)
+
#BESSELJ(7,2) = -0.3014172238218034
#BESSELJ(5,1) = -0.327579139(EXCEL)Jn(x)= NAN(calci)
+
#BESSELJ(5,1) = -0.3275791385663632
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
  
 
==See Also==
 
==See Also==
Line 30: Line 42:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
+
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 07:02, 29 September 2021

BESSELJ(x,n)


  • is the value to evaluate the function
  • is the order of the Bessel function and is an integer.
    • BESSELJ(), returns the modified Bessel Function Jn(x).

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary Complex Number.

  • But in most of the cases is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • Bessel functions of the first kind, denoted as
  • The Bessel function of the first kind of order can be expressed as:

  • where or
  • is the Gamma Function.
  • This function will give result as error when
1.  or  is non numeric
2. , because  is the order of the function.

ZOS

  • The syntax is to calculate BESSELJ in ZOS is .
    • is the value to evaluate the function
    • is the order of the Bessel function and is an integer.
  • For e.g.,BESSELJ(0.789..0.901..0.025,5)

Examples

  1. BESSELJ(2,3) = 0.12894324997562717
  2. BESSELJ(7,2) = -0.3014172238218034
  3. BESSELJ(5,1) = -0.3275791385663632

Related Videos

BESSEL Equation

See Also

References

Bessel Function