Difference between revisions of "Manuals/calci/GAMMAINV"
Jump to navigation
Jump to search
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''GAMMAINV( | + | <div style="font-size:30px">'''GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)'''</div><br/> |
− | *<math> | + | *<math>probability</math> is the probability value associated with gamma distribution |
− | *<math>alpha(\alpha)</math> & <math>beta(\beta)</math> are the values of the shape and rate parameters | + | *<math>alpha(\alpha)</math> & <math>beta(\beta)</math> are the values of the shape and rate parameters. |
+ | *<math> accuracy </math> gives accurate value of the solution. | ||
+ | *<math> somenumberofiterations </math> is any positive integer. | ||
+ | **GAMMAINV(),returns the inverse of the gamma cumulative distribution. | ||
+ | |||
==Description== | ==Description== | ||
*This function gives the inverse value of Cumulative Gamma Probability Distribution. | *This function gives the inverse value of Cumulative Gamma Probability Distribution. | ||
*This distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters <math>\alpha</math> & <math>\beta</math>. | *This distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters <math>\alpha</math> & <math>\beta</math>. | ||
*It is used in Bayesian statistics. | *It is used in Bayesian statistics. | ||
− | *In <math>GAMMAINV( | + | *In <math>GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)</math> , <math> probability </math> is the probability value associated with Gamma Distribution,<math>alpha</math> is called shape parameter and <math>beta</math> is the rate parameter of the distribution. |
− | *If <math>GAMMADIST(x,alpha,beta, | + | *If <math>GAMMADIST (x,alpha,beta,cumulative,accuracy)=prob</math>, then <math>GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)= x</math>. |
*GAMMAINV use the iterating method to find the value of <math>x</math>. | *GAMMAINV use the iterating method to find the value of <math>x</math>. | ||
*Suppose the iteration has not converged after 100 searches, then the function gives the error result. | *Suppose the iteration has not converged after 100 searches, then the function gives the error result. | ||
Line 13: | Line 17: | ||
1.Any one of the arguments are non-numeric | 1.Any one of the arguments are non-numeric | ||
2.<math>alpha \le 0 </math> or <math>beta \le 0 </math> | 2.<math>alpha \le 0 </math> or <math>beta \le 0 </math> | ||
− | 3.<math> | + | 3.<math>probability < 0</math> or <math> probability > 1 </math> |
==Examples== | ==Examples== | ||
Line 21: | Line 25: | ||
#=GAMMAINV(1,9,3) = 82.51739521528073 | #=GAMMAINV(1,9,3) = 82.51739521528073 | ||
#=GAMMAINV(1.1,9,3) = NAN, because <math> prob>1 </math> | #=GAMMAINV(1.1,9,3) = NAN, because <math> prob>1 </math> | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}} | ||
==See Also== | ==See Also== | ||
Line 28: | Line 36: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Gamma_distribution Gamma Distribution] | [http://en.wikipedia.org/wiki/Gamma_distribution Gamma Distribution] | ||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:12, 7 August 2018
GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)
- is the probability value associated with gamma distribution
- & are the values of the shape and rate parameters.
- gives accurate value of the solution.
- is any positive integer.
- GAMMAINV(),returns the inverse of the gamma cumulative distribution.
Description
- This function gives the inverse value of Cumulative Gamma Probability Distribution.
- This distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters & .
- It is used in Bayesian statistics.
- In , is the probability value associated with Gamma Distribution, is called shape parameter and is the rate parameter of the distribution.
- If , then .
- GAMMAINV use the iterating method to find the value of .
- Suppose the iteration has not converged after 100 searches, then the function gives the error result.
- This function will give the error result when
1.Any one of the arguments are non-numeric 2. or 3. or
Examples
- =GAMMAINV(0.65189,2,5) = 11.1335534510
- =GAMMAINV(0.006867292,5,7) = 8.155481331
- =GAMMAINV(0.1543869,9,3) = 18.0467153645
- =GAMMAINV(1,9,3) = 82.51739521528073
- =GAMMAINV(1.1,9,3) = NAN, because
Related Videos
See Also
References