Difference between revisions of "Manuals/calci/GAMMAINV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''GAMMAINV(prob,alpha,beta)'''</div><br/>
+
<div style="font-size:30px">'''GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)'''</div><br/>
*<math>prob</math> is the probability value associated with gamma distribution
+
*<math>probability</math> is the probability value associated with gamma distribution
*<math>alpha(\alpha)</math> & <math>beta(\beta)</math> are the values of  the shape and rate parameters
+
*<math>alpha(\alpha)</math> & <math>beta(\beta)</math> are the values of  the shape and rate parameters.
 +
*<math> accuracy </math> gives accurate value of the solution.
 +
*<math> somenumberofiterations </math> is any positive integer.
 +
**GAMMAINV(),returns the inverse of the gamma cumulative distribution.
 +
 
 
==Description==
 
==Description==
 
*This function gives the inverse value of Cumulative Gamma Probability Distribution.
 
*This function gives the inverse value of Cumulative Gamma Probability Distribution.
 
*This  distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters <math>\alpha</math> & <math>\beta</math>.  
 
*This  distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters <math>\alpha</math> & <math>\beta</math>.  
 
*It is used in Bayesian statistics.
 
*It is used in Bayesian statistics.
*In <math>GAMMAINV(prob,alpha,beta)</math> , <math>prob</math> is the probability value associated with Gamma Distribution,<math>alpha</math> is called shape parameter and <math>beta</math> is the rate parameter of the distribution.  
+
*In <math>GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)</math> , <math> probability </math> is the probability value associated with Gamma Distribution,<math>alpha</math> is called shape parameter and <math>beta</math> is the rate parameter of the distribution.  
*If <math>GAMMADIST(x,alpha,beta,TRUE)=prob</math>, then <math>GAMMAINV(prob,alpha,beta)= x</math>.  
+
*If <math>GAMMADIST (x,alpha,beta,cumulative,accuracy)=prob</math>, then <math>GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)= x</math>.  
 
*GAMMAINV use the iterating method to find the value of <math>x</math>.
 
*GAMMAINV use the iterating method to find the value of <math>x</math>.
 
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.  
Line 13: Line 17:
 
  1.Any one of the arguments are non-numeric
 
  1.Any one of the arguments are non-numeric
 
  2.<math>alpha \le 0 </math> or <math>beta \le 0 </math>
 
  2.<math>alpha \le 0 </math> or <math>beta \le 0 </math>
  3.<math>prob < 0</math> or <math> prob > 1 </math>
+
  3.<math>probability < 0</math> or <math> probability > 1 </math>
  
 
==Examples==
 
==Examples==
Line 21: Line 25:
 
#=GAMMAINV(1,9,3) = 82.51739521528073
 
#=GAMMAINV(1,9,3) = 82.51739521528073
 
#=GAMMAINV(1.1,9,3) = NAN, because <math> prob>1 </math>
 
#=GAMMAINV(1.1,9,3) = NAN, because <math> prob>1 </math>
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
  
 
==See Also==
 
==See Also==
Line 28: Line 36:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Gamma_distribution  Gamma Distribution]
 
[http://en.wikipedia.org/wiki/Gamma_distribution  Gamma Distribution]
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:12, 7 August 2018

GAMMAINV (probability,alpha,beta,accuracy,somenumberofiterations)


  • is the probability value associated with gamma distribution
  • & are the values of the shape and rate parameters.
  • gives accurate value of the solution.
  • is any positive integer.
    • GAMMAINV(),returns the inverse of the gamma cumulative distribution.

Description

  • This function gives the inverse value of Cumulative Gamma Probability Distribution.
  • This distribution is the Continuous Probability Distribution on the positive real line and it is of the reciprocal of a variable distributed according to the gamma distribution with two parameters & .
  • It is used in Bayesian statistics.
  • In , is the probability value associated with Gamma Distribution, is called shape parameter and is the rate parameter of the distribution.
  • If , then .
  • GAMMAINV use the iterating method to find the value of .
  • Suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
1.Any one of the arguments are non-numeric
2. or 
3. or 

Examples

  1. =GAMMAINV(0.65189,2,5) = 11.1335534510
  2. =GAMMAINV(0.006867292,5,7) = 8.155481331
  3. =GAMMAINV(0.1543869,9,3) = 18.0467153645
  4. =GAMMAINV(1,9,3) = 82.51739521528073
  5. =GAMMAINV(1.1,9,3) = NAN, because

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution