Difference between revisions of "Manuals/calci/NORMSINV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''NORMSINV(prob)'''</div><br/>
+
<div style="font-size:30px">'''NORMSINV (Probability)'''</div><br/>
*<math>prob</math> prob is the probability value.
+
*<math>Probability</math> is the value of the Probability.
 +
** NORMSINV(),returns the inverse of the standard normal cumulative distribution.
  
 
==Description==
 
==Description==
*This function gives the inverse of the standard normal cumulative distribution.   
+
*This function gives the inverse of the Standard Normal Cumulative Distribution.   
*In normal distribution formula, when the mean is zero and the standard deviation is 1 then it is called Standard normal distribution.
+
*In Normal Distribution formula, when the Mean is zero and the Standard Deviation is 1 then it is called Standard Normal Distribution.
*If <math> NORMSDIST(x)=prob</math>, then <math>NORMSINV(prob)=x</math>.
+
*If <math> NORMSDIST (Number,Accuracy)=Probability</math>, then <math>NORMSINV (Probability)=Number</math>.
*<math>NORMSINV</math> using the iterating method to find the value of x.
+
*<math>NORMSINV</math> using the iterating method to find the value of <math>Number</math>.
 
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.
 
*Suppose the iteration has not converged after 100 searches, then the function gives the error result.
*In <math>NORMSINV(prob)</math>, where prob is the probability value of the standard normal cumulative distribution.
+
*In <math>NORMSINV (Probability)</math>, where <math>Probability</math> is the probability value of the Standard Normal Cumulative Distribution.
 
*This function will return the result as error when  
 
*This function will return the result as error when  
  1.prob is nonnumeric.
+
  1.Probability is non-numeric.
  2.prob<0 or prob>1.
+
  2.Probability<0 or Probability>1.
  
 
==Examples==
 
==Examples==
#NORMSINV(0.9999975333)=4.567600
+
#=NORMSINV(0.9999975333) = 4.567600
#NORMSINV(0.00241)=-2.818823592
+
#=NORMSINV(0.00241) = -2.818823592
#NORMSINV(1)=Null
+
#=NORMSINV(1) = #N/A (PROBABILITY >0 (OR) PROBABILITY < 1)
#NORMSINV(0.00001)=-4.264890794
+
#=NORMSINV(0.00001) = -4.264890794
  
 +
==Related Videos==
 +
 +
{{#ev:youtube|F2rKy2cI8Ss|280|center|NORMSINV}}
  
 
==See Also==
 
==See Also==
Line 26: Line 30:
  
 
==References==
 
==References==
 +
[http://en.wikipedia.org/wiki/Normal_distribution Normal Distribution]
  
  
  
 +
*[[Z_API_Functions | List of Main Z Functions]]
  
'''NORMSINV'''('''p''')
+
*[[ Z3 Z3 home ]]
 
 
'''Where p'''   is a probability equivalent to the normal distribution.
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">It calculates  the inverse of the standard normal cumulative distribution.</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
·          For nonnumeric p ,NORMSINV shows error.
 
 
 
·          When  p&lt;  0 or p&gt; 1, NORMSINV displays  error.
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
NORMSINV
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">  <font color="#000000"><font face="Arial, sans-serif"><font size="3"><font color="#000000"><font face="Times New Roman, serif"><font size="3">
 
 
 
<font size="3"><font face="Times New Roman">Let’s see an example in (Column1 Row 1)</font></font>
 
 
 
<font size="3">i.e.=</font>''' '''NORMSINV<font size="3"> (C1R1)</font>
 
 
 
<font size="3">i.e.=</font> NORMSINV<font size="3"> (0.80879) is 0.8734</font>
 
 
 
</font></font></font></font></font></font></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="  " |
 
| class=" SelectTD SelectTD" |
 
<div id="5Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.80879
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 0.8734460503371548
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="   " |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class=" " |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="  " |
 
|
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Latest revision as of 09:29, 2 June 2020

NORMSINV (Probability)


  • is the value of the Probability.
    • NORMSINV(),returns the inverse of the standard normal cumulative distribution.

Description

  • This function gives the inverse of the Standard Normal Cumulative Distribution.
  • In Normal Distribution formula, when the Mean is zero and the Standard Deviation is 1 then it is called Standard Normal Distribution.
  • If , then .
  • using the iterating method to find the value of .
  • Suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • In , where is the probability value of the Standard Normal Cumulative Distribution.
  • This function will return the result as error when
1.Probability is non-numeric.
2.Probability<0 or Probability>1.

Examples

  1. =NORMSINV(0.9999975333) = 4.567600
  2. =NORMSINV(0.00241) = -2.818823592
  3. =NORMSINV(1) = #N/A (PROBABILITY >0 (OR) PROBABILITY < 1)
  4. =NORMSINV(0.00001) = -4.264890794

Related Videos

NORMSINV

See Also

References

Normal Distribution