Difference between revisions of "Manuals/calci/COMBIN"
Jump to navigation
Jump to search
(17 intermediate revisions by 5 users not shown) | |||
Line 2: | Line 2: | ||
*<math>Number</math> is the number of items. | *<math>Number</math> is the number of items. | ||
− | *<math> | + | *<math>NumberChosen</math> is the number of items in each arrangement. |
+ | **COMBIN() returns the number of combinations for a given number of objects. | ||
==Description== | ==Description== | ||
Line 11: | Line 12: | ||
*If the order is not a matter, it is a Combination. | *If the order is not a matter, it is a Combination. | ||
*If the order is a matter it is a Permutation. | *If the order is a matter it is a Permutation. | ||
− | *A combination is denoted by | + | *A combination is denoted by <math>^nC_r</math> or <math>\binom{n}{r}</math> or <math>C(n,r)</math>. |
*A formula for the number of possible combinations of <math>r</math> objects from a set of <math>n</math> objects is: | *A formula for the number of possible combinations of <math>r</math> objects from a set of <math>n</math> objects is: | ||
<math>\binom{n}{r}=\frac{n!}{r!(n-r)!}</math> | <math>\binom{n}{r}=\frac{n!}{r!(n-r)!}</math> | ||
Line 18: | Line 19: | ||
#The <math>n</math> & <math>r</math> are non numeric | #The <math>n</math> & <math>r</math> are non numeric | ||
#The <math>n</math> & <math>r < 0 </math> or <math>n < r</math> | #The <math>n</math> & <math>r < 0 </math> or <math>n < r</math> | ||
− | *When we are giving the <math>n</math> & <math>r</math> values in decimals, it will | + | *When we are giving the <math>n</math> & <math>r</math> values in decimals, it will truncated into Integers. |
*For e.g. | *For e.g. | ||
**COMBIN(5.4,2)=10 is equivalent to COMBIN(5,2) | **COMBIN(5.4,2)=10 is equivalent to COMBIN(5,2) | ||
− | **COMBIN(5,-2)= | + | **COMBIN(5,-2)=#N/A (NUMBERCHOSEN > 0), because <math>r</math> is negative. |
− | ==ZOS | + | ==ZOS== |
− | + | *The syntax is to calculate COMBIN in ZOS is <math>COMBIN(Number,NumberChosen)</math> | |
− | *The syntax is to calculate COMBIN in ZOS is COMBIN(Number, | ||
**<math>Number</math> is the number of items. | **<math>Number</math> is the number of items. | ||
− | **<math> | + | **<math>NumberChosen</math> is the number of items in each arrangement. |
**For e.g.,COMBIN(20..23,6..7) | **For e.g.,COMBIN(20..23,6..7) | ||
**COMBIN(4,2)*COMBIN(10,5) | **COMBIN(4,2)*COMBIN(10,5) | ||
+ | **COMBIN(12.3,3) gives 220, though COMBIN(12.3d,3n) gives 238.5995. Here, the use of higher number types (like big number, decimal, etc.) different logic is triggered. In base plain numbers and Number objects, the numbers are truncated. | ||
+ | |||
+ | {{#ev:youtube|cQXPq6y8bOw|280|center|Combin}} | ||
==Examples== | ==Examples== | ||
{| id="TABLE3" class="SpreadSheet blue" | {| id="TABLE3" class="SpreadSheet blue" | ||
|- class="even" | |- class="even" | ||
− | | COMBIN( | + | | COMBIN(Number,NumberChosen) |
− | ! | + | ! Number |
− | ! | + | ! Numberchosen |
! RESULT | ! RESULT | ||
|- | |- | ||
Line 55: | Line 58: | ||
|1 | |1 | ||
|} | |} | ||
+ | a=34!C!3 | ||
+ | 5984 | ||
+ | |||
+ | COMBIN(PERMUT(34, 3n), 3) (For Big Integer) OR a=34n!P!3!C!3 = 7713313203904 | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|Bzuj8ItKT5w|280|center|COMBIN}} | ||
==See Also== | ==See Also== | ||
Line 63: | Line 74: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Combination Combination] | [http://en.wikipedia.org/wiki/Combination Combination] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 03:18, 24 February 2022
COMBIN(Number,Numberchosen)
- is the number of items.
- is the number of items in each arrangement.
- COMBIN() returns the number of combinations for a given number of objects.
Description
- This function gives the combination of the given number of objects.
- Let Number be "n" and Number chosen be "r".
- So the Combinations is an arrangement of objects without any repetition, selected from different objects is called a combination of objects taken at a time.
- For example consider three colors, like Blue,Yellow,Pink.There are three combinations of two can be drawn from the set:Blue and Yellow,Blue and Pink,or Yellow and Pink.
- If the order is not a matter, it is a Combination.
- If the order is a matter it is a Permutation.
- A combination is denoted by or or .
- A formula for the number of possible combinations of objects from a set of objects is:
where & .
- This function will give Error Result when
- The & are non numeric
- The & or
- When we are giving the & values in decimals, it will truncated into Integers.
- For e.g.
- COMBIN(5.4,2)=10 is equivalent to COMBIN(5,2)
- COMBIN(5,-2)=#N/A (NUMBERCHOSEN > 0), because is negative.
ZOS
- The syntax is to calculate COMBIN in ZOS is
- is the number of items.
- is the number of items in each arrangement.
- For e.g.,COMBIN(20..23,6..7)
- COMBIN(4,2)*COMBIN(10,5)
- COMBIN(12.3,3) gives 220, though COMBIN(12.3d,3n) gives 238.5995. Here, the use of higher number types (like big number, decimal, etc.) different logic is triggered. In base plain numbers and Number objects, the numbers are truncated.
Examples
COMBIN(Number,NumberChosen) | Number | Numberchosen | RESULT |
---|---|---|---|
COMBIN(12,3) | 12 | 3 | 220 |
COMBIN(4,4) | 4 | 4 | 1 |
COMBIN(4,0) | 4 | 0 | 1 |
a=34!C!3 5984
COMBIN(PERMUT(34, 3n), 3) (For Big Integer) OR a=34n!P!3!C!3 = 7713313203904
Related Videos
See Also
References