Difference between revisions of "Manuals/calci/BETAFUNCTION"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
*Beta function  is also called the Euler integral of the first kind.  
 
*Beta function  is also called the Euler integral of the first kind.  
 
*To evaluate the Beta function we usually use the Gamma function.
 
*To evaluate the Beta function we usually use the Gamma function.
<math>B(x,y)=\frac{Gamma(x)Gamma(y)}{Gamma(x+y)}</math>.
+
<math>B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}</math>.
 
*For x,y positive we define the Beta function by:
 
*For x,y positive we define the Beta function by:
 
<math>B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt</math>
 
<math>B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt</math>
 +
 +
==Examples==
 +
#BETAFUNCTION(10,23) = 1.550093439705759e-9
 +
#BETAFUNCTION(9.1,7.4) = 0.00001484129272494359
 +
#BETAFUNCTION(876,432) = NaN
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=v1uUgTcInQk|280|center|Beta Function}}
 +
 +
==See Also==
 +
*[[Manuals/calci/BETADISTX | BETADISTX]]
 +
*[[Manuals/calci/BETAINV | BETAINV]]
 +
 +
==References==
 +
[http://math.feld.cvut.cz/mt/txtd/5/txe3da5h.htm Beta Function]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:04, 4 December 2018

BETAFUNCTION (a,b)


  • and are any positive real numbers.

Description

  • This function returns the value of the Beta function.
  • Beta function is also called the Euler integral of the first kind.
  • To evaluate the Beta function we usually use the Gamma function.

.

  • For x,y positive we define the Beta function by:

Examples

  1. BETAFUNCTION(10,23) = 1.550093439705759e-9
  2. BETAFUNCTION(9.1,7.4) = 0.00001484129272494359
  3. BETAFUNCTION(876,432) = NaN

Related Videos

Beta Function

See Also

References

Beta Function