Difference between revisions of "Manuals/calci/BINOMIALDISTRIBUTED"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "==Binomial")
 
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Binomial
+
<div style="font-size:30px">'''BINOMIALDISTRIBUTED (Numbers,Probability,Trials)'''</div><br/>
 +
*<math>Numbers</math> is the number of variables.
 +
*<math>Probability</math> is the value from 0 to 1.
 +
*<math>Trials</math> is the any positive real number.
 +
 
 +
==Description==
 +
*This function gives the value of the Binomial distribution.
 +
*In <math>BINOMIALDISTRIBUTED (Numbers,Probability,Trials)</math>, <math>Numbers</math> is the number of the variables and <math>Probability</math> is the probability value which varies from 0 to 1.<math> Trial </math> is any positive real number.
 +
*This gives  the discrete probability distribution.
 +
*The probability of getting exactly  k  successes in  n  trials is given by the Probability Mass Function:
 +
<math> b(k;n,p)=Pr(X = k) = \binom{n}{k}p^{k}(1-p)^{n-k}</math> for k=0,1,2,3...n where  <math>\binom{n}{k}</math> is the COMBIN(n,k) i.e.<math> \binom{n}{k} = \frac{n!}{k!(n-k)}!</math>
 +
 
 +
*The Cumulative Binomial Distribution is:<math>B(x;n,p) = Pr(X \le x) =\sum_{i=0}^x  \binom{n}{i}p^{i}(1-p)^{(n-i)}</math>.
 +
 
 +
==Examples==
 +
# BINOMIALDISTRIBUTED(10,0.4) = 36 42 45 41 41 38 37 36 32 41
 +
# BINOMIALDISTRIBUTED(5,0.3,76) = 23 29 20 19 23
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=WWv0RUxDfbs|280|center|Binomial Distribution}}
 +
 
 +
==See Also==
 +
 
 +
*[[Manuals/calci/BINOMDIST | BINOMDIST]]
 +
*[[Manuals/calci/COMBIN | COMBIN]]
 +
*[[Manuals/calci/FACT | FACT]]
 +
 
 +
==References==
 +
[http://en.wikipedia.org/wiki/Binomial_distribution  Binomial Distribution]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:59, 5 December 2018

BINOMIALDISTRIBUTED (Numbers,Probability,Trials)


  • is the number of variables.
  • is the value from 0 to 1.
  • is the any positive real number.

Description

  • This function gives the value of the Binomial distribution.
  • In , is the number of the variables and is the probability value which varies from 0 to 1. is any positive real number.
  • This gives the discrete probability distribution.
  • The probability of getting exactly k successes in n trials is given by the Probability Mass Function:

for k=0,1,2,3...n where is the COMBIN(n,k) i.e.

  • The Cumulative Binomial Distribution is:.

Examples

  1. BINOMIALDISTRIBUTED(10,0.4) = 36 42 45 41 41 38 37 36 32 41
  2. BINOMIALDISTRIBUTED(5,0.3,76) = 23 29 20 19 23

Related Videos

Binomial Distribution

See Also

References

Binomial Distribution