Difference between revisions of "Manuals/calci/hadamard"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''MATRIX("HADAMARD",order)'''</div><br/> *<math>order</math> is the order of the hadamard matrix. ==Description== *This function gives the matrix...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="font-size:30px">'''MATRIX("HADAMARD",order)'''</div><br/>
+
<div style="font-size:30px">'''HADAMARD(Number)'''</div><br/>
*<math>order</math> is the order of the hadamard matrix.
+
*<math>Number</math> is the order of the hadamard matrix.
  
 
==Description==
 
==Description==
Line 26: Line 26:
 
1 & -1 & -1 & 1\\
 
1 & -1 & -1 & 1\\
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 +
 +
==Examples==
 +
1. HADAMARD(1) = 1
 +
 +
2. HADAMARD(3)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1
 +
|-
 +
| 1 || -1 || 1 || -1
 +
|-
 +
| 1 || 1 || -1 || -1
 +
|-
 +
|1 || -1 ||-1 || 1
 +
|}
 +
3. HADAMARD(4)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1 || 1|| 1 || 1 || 1
 +
|-
 +
| 1 ||-1 ||1 || -1 ||1 ||-1 || 1 ||-1
 +
|-
 +
|1 || 1 ||-1|| -1|| 1 || 1|| -1||-1
 +
|-
 +
|1||-1 ||-1|| 1|| 1||-1 || -1 ||1
 +
|-
 +
|1 || 1 || 1|| 1 || -1 || -1||-1||-1
 +
|-
 +
|1 ||-1 || 1 || -1 || -1 || 1|| -1||1
 +
|-
 +
|1 || 1 || -1 || -1 || -1|| -1||1 ||1
 +
|-
 +
|1 || -1 || -1||  1 || -1||1|| 1||-1
 +
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=BM6TUF5dp9c|280|center|Hadamard Matrix}}
 +
 +
 +
==See Also==
 +
*[[Manuals/calci/HADAMARD| HADAMARD]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/CIRCULANT| CIRCULANT]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Hadamard_matrix Hadamard matrix]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 12:47, 9 April 2019

HADAMARD(Number)


  • is the order of the hadamard matrix.

Description

  • This function gives the matrix satisfying the property of Hadamard.
  • A Hadamard matrix is the square matrix with the entries of 1 and -1.
  • Also the rows of that matrix are orthogonal.
  • So H be a Hadamard matrix of order 2n.
  • The transpose of H is closely related to its inverse.
  • The equivalent definition for hadamard matrix is:
  

where is the n × n identity matrix and is the transpose of H.

  • So the possible order of the matrix is 1,2 or positive multiple of 4.
  • The few examples of hadamard matrices are:

Examples

1. HADAMARD(1) = 1

2. HADAMARD(3)

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

3. HADAMARD(4)

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

Related Videos

Hadamard Matrix


See Also

References