Difference between revisions of "Manuals/calci/MATRIXINVERSE"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
*This function shows the inverse value of the given matrix. | *This function shows the inverse value of the given matrix. | ||
*In <math>MATRIXINVERSE (a)</math>, <math>a</math> is any square matrix. | *In <math>MATRIXINVERSE (a)</math>, <math>a</math> is any square matrix. | ||
− | *Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by <math>A^-1</math>. | + | *Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by <math>A^{-1}</math>. |
*Consider the square matrix A has an inverse which should satisfies the following condition <math>|A|\ne 0</math> | *Consider the square matrix A has an inverse which should satisfies the following condition <math>|A|\ne 0</math> | ||
*Also <math>AA^{-1}=I</math>(Identity matrix). | *Also <math>AA^{-1}=I</math>(Identity matrix). | ||
Line 16: | Line 16: | ||
d & -b \\ | d & -b \\ | ||
-c & a | -c & a | ||
− | \end{bmatrix}</math> =\frac{1}{ad-bc} \begin{bmatrix} | + | \end{bmatrix}</math> =<math>\frac{1}{ad-bc} \begin{bmatrix} |
d & -b \\ | d & -b \\ | ||
-c & a | -c & a | ||
Line 34: | Line 34: | ||
C & F & I | C & F & I | ||
\end{bmatrix}}</math> | \end{bmatrix}}</math> | ||
+ | where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce) H=-(af-cd);I=(ae-bd) | ||
+ | |||
+ | ==Examples== | ||
+ | 1. MATRIXINVERSE([4,7;2,6]) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 0.6 || -0.7 | ||
+ | |- | ||
+ | | -0.2 || 0.4 | ||
+ | |} | ||
+ | 2. MATRIXINVERSE([1,2,3;0,1,4;5,6,0]) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | -24 || 18 || 5 | ||
+ | |- | ||
+ | | 20 || -15 || -4 | ||
+ | |- | ||
+ | | -5 || 4 || 1 | ||
+ | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=Fg7_mv3izR0|280|center|Matrix Inverse}} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/MATRIXOPERATORS| MATRIXOPERATORS]] | ||
+ | *[[Manuals/calci/MATRIXDETERMINANT| MATRIXDETERMINANT]] | ||
+ | *[[Manuals/calci/DET| DET]] | ||
+ | |||
+ | ==References== | ||
+ | *[https://en.wikipedia.org/wiki/Invertible_matrix Matrix Inverse] | ||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 13:55, 12 April 2019
MATRIXINVERSE (a)
- is any matrix.
Description
- This function shows the inverse value of the given matrix.
- In , is any square matrix.
- Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by .
- Consider the square matrix A has an inverse which should satisfies the following condition
- Also (Identity matrix).
- Consider 2x2 matrix:A=[a b;c d].
- The inverse of matrix A is calculated by
= =
- Consider 3x3 matrix A and its inverse is calculated by
==
where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce) H=-(af-cd);I=(ae-bd)
Examples
1. MATRIXINVERSE([4,7;2,6])
0.6 | -0.7 |
-0.2 | 0.4 |
2. MATRIXINVERSE([1,2,3;0,1,4;5,6,0])
-24 | 18 | 5 |
20 | -15 | -4 |
-5 | 4 | 1 |