Difference between revisions of "Manuals/calci/BESSELI"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELI'''</font></font></font><font color="#484...")
 
 
(38 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELI'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELI(x,n)'''</div><br/>
 +
*<math>x</math> is the value to evaluate the function
 +
*<math>n</math> is an integer which is the order of the Bessel function.
 +
**BESSELI(), returns the modified Bessel Function In(x).
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'v' is the value at which to evaluate the function and 'o' is the order of the Bessel function. </font></font></font>
+
==Description==
 +
*This function gives the value of the modified Bessel function.
 +
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as:
 +
<math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
 +
where <math>\alpha</math> is the arbitrary complex number.
 +
*But in most of the cases α is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 +
*Bessel functions of the first kind, denoted as <math>J_n(x)</math>.
 +
*The <math>n^{th}</math> order modified Bessel function of the variable <math>x</math> is:
 +
<math>I_n(x)=i^{-n}J_n(ix)</math>,
 +
where :
 +
<math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math>
 +
*This function will give the result as error when:
 +
1.<math>x</math> or <math>n</math> is non numeric
 +
2.<math>n<0</math>, because <math>n</math> is the order of the function.
  
</div>
+
==ZOS==
----
+
*The syntax is to calculate BESSELI IN ZOS is <math>BESSELI(x,n)</math>.
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the modified Bessel function, which is equivalent to the Bessel function evaluated for purely imaginary arguments.</font></font></font></div>
+
**<math>x</math> is the value to evaluate the function
----
+
**<math>n</math> is an integer which is the order of the Bessel function.
<div id="7SpaceContent" class="zcontent" align="left">
+
*For e.g.,BESSELI(0.25..0.7..0.1,42)
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELI returns the error value when 'v' and 'o' are nonnumeric. </font></font></font>
+
==Examples==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'0' should be grater than 1</font></font></font>
+
#BESSELI(3,2) = 2.245212431 this is the <math>2^{nd}</math> derivative of <math>I_n(x)</math>.
 +
#BESSELI(5,1) = 24.33564185
 +
#BESSELI(6,0) = 67.23440724
 +
#BESSELI(-2,1) = -1.59063685
 +
#BESSELI(2,-1) = #N/A (ORDER OF FUNCTION < 0).
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The o-th order modified Bessel function of the variable 'v' is: </font></font></font>
+
==Related Videos==
  
<font color="#484848" face="Arial"></font>
+
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
  
<font color="#484848" face="Arial"></font>
+
==See Also==
 +
*[[Manuals/calci/BESSELJ  | BESSELJ ]]
 +
*[[Manuals/calci/BESSELK  | BESSELK ]]
 +
*[[Manuals/calci/BESSELY  | BESSELY ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where v = x and o = n</font></font></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
  
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
BESSELI
 
  
</div></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="8SpaceContent" class="zcontent" align="left">  <font color="#000000"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>
 
  
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2">BASSELI(v,o)</font></font></font>]
+
*[[ Z3 |   Z3 home ]]
 
 
<font face="Tahoma, sans-serif"><font size="1">[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=BESSELI(2.5, 1) is 2.5167</nowiki></font></font></font>]</font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 2.5
 
| class="sshl_f" | 2.516716
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 1
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                        " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:23.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/23.JPG]]</div></div>
 
----
 

Latest revision as of 03:23, 18 November 2020

BESSELI(x,n)


  • is the value to evaluate the function
  • is an integer which is the order of the Bessel function.
    • BESSELI(), returns the modified Bessel Function In(x).

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The order modified Bessel function of the variable is:

, where :

  • This function will give the result as error when:
1. or  is non numeric
2., because  is the order of the function.

ZOS

  • The syntax is to calculate BESSELI IN ZOS is .
    • is the value to evaluate the function
    • is an integer which is the order of the Bessel function.
  • For e.g.,BESSELI(0.25..0.7..0.1,42)

Examples

  1. BESSELI(3,2) = 2.245212431 this is the derivative of .
  2. BESSELI(5,1) = 24.33564185
  3. BESSELI(6,0) = 67.23440724
  4. BESSELI(-2,1) = -1.59063685
  5. BESSELI(2,-1) = #N/A (ORDER OF FUNCTION < 0).

Related Videos

BESSEL Equation

See Also

References

Bessel Function