Difference between revisions of "Manuals/calci/BESSELI"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELI'''</font></font></font><font color="#484...") |
|||
(38 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''BESSELI(x,n)'''</div><br/> |
+ | *<math>x</math> is the value to evaluate the function | ||
+ | *<math>n</math> is an integer which is the order of the Bessel function. | ||
+ | **BESSELI(), returns the modified Bessel Function In(x). | ||
− | < | + | ==Description== |
+ | *This function gives the value of the modified Bessel function. | ||
+ | *Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates. | ||
+ | *Bessel's Differential Equation is defined as: | ||
+ | <math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math> | ||
+ | where <math>\alpha</math> is the arbitrary complex number. | ||
+ | *But in most of the cases α is the non-negative real number. | ||
+ | *The solutions of this equation are called Bessel Functions of order <math>n</math>. | ||
+ | *Bessel functions of the first kind, denoted as <math>J_n(x)</math>. | ||
+ | *The <math>n^{th}</math> order modified Bessel function of the variable <math>x</math> is: | ||
+ | <math>I_n(x)=i^{-n}J_n(ix)</math>, | ||
+ | where : | ||
+ | <math>J_n(x)=\sum_{k=0}^\infty \frac{(-1)^k*(\frac{x}{2})^{n+2k} }{k!\Gamma(n+k+1)}</math> | ||
+ | *This function will give the result as error when: | ||
+ | 1.<math>x</math> or <math>n</math> is non numeric | ||
+ | 2.<math>n<0</math>, because <math>n</math> is the order of the function. | ||
− | + | ==ZOS== | |
− | + | *The syntax is to calculate BESSELI IN ZOS is <math>BESSELI(x,n)</math>. | |
− | + | **<math>x</math> is the value to evaluate the function | |
− | + | **<math>n</math> is an integer which is the order of the Bessel function. | |
− | + | *For e.g.,BESSELI(0.25..0.7..0.1,42) | |
− | + | ==Examples== | |
− | + | #BESSELI(3,2) = 2.245212431 this is the <math>2^{nd}</math> derivative of <math>I_n(x)</math>. | |
+ | #BESSELI(5,1) = 24.33564185 | ||
+ | #BESSELI(6,0) = 67.23440724 | ||
+ | #BESSELI(-2,1) = -1.59063685 | ||
+ | #BESSELI(2,-1) = #N/A (ORDER OF FUNCTION < 0). | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}} | |
− | + | ==See Also== | |
+ | *[[Manuals/calci/BESSELJ | BESSELJ ]] | ||
+ | *[[Manuals/calci/BESSELK | BESSELK ]] | ||
+ | *[[Manuals/calci/BESSELY | BESSELY ]] | ||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/Bessel_function Bessel Function] | ||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | |||
− | |||
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 03:23, 18 November 2020
BESSELI(x,n)
- is the value to evaluate the function
- is an integer which is the order of the Bessel function.
- BESSELI(), returns the modified Bessel Function In(x).
Description
- This function gives the value of the modified Bessel function.
- Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
- Bessel's Differential Equation is defined as:
where is the arbitrary complex number.
- But in most of the cases α is the non-negative real number.
- The solutions of this equation are called Bessel Functions of order .
- Bessel functions of the first kind, denoted as .
- The order modified Bessel function of the variable is:
, where :
- This function will give the result as error when:
1. or is non numeric 2., because is the order of the function.
ZOS
- The syntax is to calculate BESSELI IN ZOS is .
- is the value to evaluate the function
- is an integer which is the order of the Bessel function.
- For e.g.,BESSELI(0.25..0.7..0.1,42)
Examples
- BESSELI(3,2) = 2.245212431 this is the derivative of .
- BESSELI(5,1) = 24.33564185
- BESSELI(6,0) = 67.23440724
- BESSELI(-2,1) = -1.59063685
- BESSELI(2,-1) = #N/A (ORDER OF FUNCTION < 0).
Related Videos
See Also
References