Difference between revisions of "Manuals/calci/BESSELY"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY'''</font></font></font><font color="#48...")
 
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v '''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELY(x,n)'''</div><br/>
 +
*<math>x</math> is the value at which to evaluate the function
 +
*<math>n</math> is the integer which is the order of the Bessel Function
 +
**BESSELY(), returns the Bessel Function Yn(x)
 +
==Description==
 +
*This function gives the value of the modified Bessel function.
 +
*Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as: <math>x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} + (x^2 - \alpha^2)y =0</math>  
 +
where <math>\alpha</math> is the arbitrary complex number.
 +
*But in most of the cases <math>\alpha</math> is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 +
*The Bessel function of the second kind <math>Yn(x)</math> and sometimes it is called Weber Function or the Neumann Function..
 +
*The Bessel function of the 2nd kind of order  can be expressed as: <math>Yn(x)= \lim_{p \to n}\frac{J_p(x)Cos(p\pi)- J_{-p}(x)}{Sin(p\pi)}</math>
 +
*where <math>Jn(x)</math> is the Bessel functions of the first kind.
 +
*This function will give the result as error when:
 +
1. <math>x</math> or <math>n</math> is non numeric
 +
2. <math>n<0</math>, because <math>n</math> is the order of the function.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>Where 'v'' is the value to evaluate the function and 'o' is the order of the function. </nowiki></font></font></font>
+
==ZOS==
 +
*The syntax is to calculate BESSELY in ZOS is <math>BESSELY(x,n)</math>.
 +
**<math>x</math> is the value at which to evaluate the function
 +
**<math>n</math> is the integer which is the order of the Bessel Function
  
</div>
+
==Examples==
----
 
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the Bessel function.</font></font></font></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELI returns the error value when 'v' and 'o' are nonnumeric. </font></font></font>
+
#=BESSELY(2,3) = -1.1277837651220644
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">'0' should be grater than 1</font></font></font>
+
#=BESSELY(0.7,4)= -132.6340573047033
** <font color="#484848"><font face="Arial, sans-serif"><font size="2">The o-th order Bessel function of the variable 'v' is: </font></font></font>
+
#=BESSELY(9,1) = 0.10431457495919716
 +
#=BESSELY(2,-1) = #N/A (ORDER OF FUNCTION < 0)
  
* <font color="#484848"></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">where v = x and o = n</font></font></font>
+
==Related Videos==
  
</div>
+
{{#ev:youtube|__fdGscBZjI|280|center|BESSEL Equation}}
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
BESSELY
+
==See Also==
 +
*[[Manuals/calci/BESSELI  | BESSELI ]]
 +
*[[Manuals/calci/BESSELK  | BESSELK ]]
 +
*[[Manuals/calci/BESSELJ  | BESSELJ ]]
  
</div></div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
<div id="8SpaceContent" class="zcontent" align="left">
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY(v ,o)'''</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY(C1R1, C2R2)'''</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=BESSELY(3, 1) is 0.3247</nowiki>'''</font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
</div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 3
 
| class="sshl_f" | 0.324674
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 1
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                    " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:19.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/19.JPG]]</div></div>
 
----
 

Latest revision as of 07:07, 29 September 2021

BESSELY(x,n)


  • is the value at which to evaluate the function
  • is the integer which is the order of the Bessel Function
    • BESSELY(), returns the Bessel Function Yn(x)

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary complex number.

  • But in most of the cases is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • The Bessel function of the second kind and sometimes it is called Weber Function or the Neumann Function..
  • The Bessel function of the 2nd kind of order can be expressed as:
  • where is the Bessel functions of the first kind.
  • This function will give the result as error when:
1.  or  is non numeric 
2. , because  is the order of the function.

ZOS

  • The syntax is to calculate BESSELY in ZOS is .
    • is the value at which to evaluate the function
    • is the integer which is the order of the Bessel Function

Examples

  1. =BESSELY(2,3) = -1.1277837651220644
  2. =BESSELY(0.7,4)= -132.6340573047033
  3. =BESSELY(9,1) = 0.10431457495919716
  4. =BESSELY(2,-1) = #N/A (ORDER OF FUNCTION < 0)

Related Videos

BESSEL Equation

See Also

References

Bessel Function