Difference between revisions of "Manuals/calci/IMLOG10"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMLOG10(Complexnumber,Base)'''</div><br/>
 +
*<math>z</math>  is of the form <math>z=x+iy</math>
 +
*<math>Base</math>is value of the base.
  
Syntax
+
==Description==
 +
*This function gives the common logarithm of a complex number.
 +
*In <math>IMLOG10(Complexnumber,Base)</math>, where Complexnumber is  in the form of <math>z=x+iy</math>. i.e <math>x</math> & <math>y</math> are the real numbers.
 +
*And <math>I</math> is the imaginary unit .<math>i=\sqrt{-1}</math>.
 +
*Log base 10, is known as the common Logarithm or Decadic logarithm, is the logarithm to the base 10.
 +
*To find the common logarithm of a complex number, we have to calculate from the Natural Logarithm.
 +
*So <math>log10(x+iy)=(log_{10} e)ln(x+iy)</math>.
 +
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number into a complex number.
  
</div></div>
+
==Examples==
----
 
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Remarks
+
#=IMLOG10("6+7i") = 0.964709462857146+0.37443569720420i
 +
#=IMLOG10("4-5i") = 0.806391928359868-0.389151908999031i
 +
#=IMLOG10("8") = 0.903089986991944
 +
#=IMLOG10("3i") = 0.477121254719662+0.682188176920921i
 +
#=IMLOG10("0") = NULL
  
</div></div>
+
==Related Videos==
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Examples
+
{{#ev:youtube|m-d_Xks90AM|280|center|Log of Complex Number}}
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/IMLN  | IMLN ]]
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
+
*[[Manuals/calci/LOG10 | LOG10 ]]
----
+
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]
</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the common logarithm (base 10) of a complex number in a + bi or a + bj text format.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMLOG10</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The common logarithm of a complex number can be calculated from the natural logarithm as follows: </font></font></font>
 
 
 
<font color="#484848">log<sub>10</sub>(x+yi)=(log<sub>10</sub>e)1n(x+yi)</font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMLOG10'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">   is a complex number </font></font></font>
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.7311989989494778+0.16525181990889784i
 
| class="                                                      " |
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                  " |
 
| class="SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e. =IMLOG10(“5+2i”) is 0.73119+0.16525i</font></font></font>
 
 
 
</div>
 
----
 

Latest revision as of 13:43, 12 June 2015

IMLOG10(Complexnumber,Base)


  • is of the form
  • is value of the base.

Description

  • This function gives the common logarithm of a complex number.
  • In , where Complexnumber is in the form of . i.e & are the real numbers.
  • And is the imaginary unit ..
  • Log base 10, is known as the common Logarithm or Decadic logarithm, is the logarithm to the base 10.
  • To find the common logarithm of a complex number, we have to calculate from the Natural Logarithm.
  • So .
  • We can use COMPLEX function to convert real and imaginary number into a complex number.

Examples

  1. =IMLOG10("6+7i") = 0.964709462857146+0.37443569720420i
  2. =IMLOG10("4-5i") = 0.806391928359868-0.389151908999031i
  3. =IMLOG10("8") = 0.903089986991944
  4. =IMLOG10("3i") = 0.477121254719662+0.682188176920921i
  5. =IMLOG10("0") = NULL

Related Videos

Log of Complex Number

See Also

References

Binary Logarithm