Difference between revisions of "Manuals/calci/ZTEST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ZTEST'''</font></font></font><font color="#48484...")
 
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ZTEST'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ar'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''p'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,sigma)</font></font></font>
+
<div style="font-size:30px">'''ZTEST (Array,Mean,StandardDeviationForPopulation,IsTwoTailed,Accuracy)'''</div><br/>
 +
*<math>Array</math> is the set of values.
 +
*<math>Mean</math> is the mean value.
 +
*<math>StandardDeviationForPopulation</math> is the standard deviation of the population.
 +
*<math>IsTwoTailed</math> is the value of the tail.
 +
*<math>Accuracy</math> gives accurate value of the solution.
 +
**ZTEST() returns the one-tailed probability-value of a z-test.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'ar' is the array or range of data, 'p' is the value to test and 'sigma' is the population (known) standard deviation. </font></font></font>
+
==Description==
 +
*This function gives the one-tailed probability of z-test.
 +
*Z-test is  used to determine whether two population means are different when the variances are known and the sample size is large.
 +
*In <math>ZTEST (Array,Mean,StandardDeviationForPopulation,IsTwoTailed,Accuracy)</math>,<math> Array </math> is the array of values against which the hypothesized sample mean is to be tested.
 +
*<math> Mean </math> is the  hypothesized sample mean, and <math>StandardDeviationForPopulation</math> is the standard deviation of the population.
 +
*When we are not giving the sigma value, it will use the standard deviation of sample.
 +
*This  function returns the probability that the supplied hypothesized sample mean is greater than the mean of the supplied data values.
 +
*The test statistic should follow a normal distribution.
 +
*ZTEST is calculated when sigma is not omitted and x=μ0 : <math>ZTEST(ar,\mu_0,sigma)= 1-NORMDIST(\bar{x}-\mu_0)/\frac{sigma}{\sqrt{n}}</math>
 +
*ZTEST is calculated when sigma is omitted and x=μ0:
 +
<math> ZTEST(ar,\mu_0)=1-NORMDIST(\bar{x}-\mu_0)/\frac{s}{\sqrt{n}}</math>
 +
where <math>\bar{x}</math> is sample mean , <math> s</math> is the sample deviation and <math>n</math> is the  size of the sample.
 +
*Suppose we want to calculate the z-test for two tailed probability then this can be done by using the Z_test function: <math>2*MIN(ZTEST(ar,\mu_0,sigma),1-ZTEST(ar,\mu_0,sigma))</math>.
 +
*This function will give the result as error when
 +
    1. Any one of the argument is non-numeric.
 +
    2. Array or Mean value is empty.
 +
    3. Array contains only one value.
  
</div>
+
==Examples==
----
+
#'''Example 1'''
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the one-tailed probability-value of a z-test. </font></font></font></div>
+
{| class="wikitable"
----
+
|+Spreadsheet
<div id="7SpaceContent" class="zcontent" align="left"
+
|-
 
+
! !! A !! B !! C !! D !! E !! F !! G
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">ZTEST is calculated as follows when sigma is not omitted: </font></font></font>
+
|-
 
+
! 1
<font color="#484848"></font>
+
| 10 || 15 || 7 || 2 || 19 || 20 || 12
 
+
|-
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where 'ar' = array, '''''''p' = μ<sub>0 </sub></font></font></font>
+
! 2
 
+
| 3 || 4 || 8 || 1 || 10 || 15 || 5
<font color="#484848"><font face="Arial, sans-serif"><font size="2">or when sigma is omitted:</font></font></font>
+
|}
 
+
#=ZTEST(A1:G1,4) = 0.00042944272036
<font color="#484848"></font>
+
#=2*MIN(ZTEST(A1:G1,4),1-ZTEST(A1:G1,4)) = 0.000858885440
 
+
#=ZTEST(A2:F2,10) = 0.9708451547030459
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where 'ar' = array, '''''''p' =-μ<sub>0 </sub></font></font></font>
+
#=2*MIN(ZTEST(A2:F2,10),1-ZTEST(A2:F2,10)) = 0.058309690593908226
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">x is the sample mean AVERAGE(ar); s is the sample standard deviation STDEV(array); and n is the number of observations in the sample COUNT(array).</font></font></font>
 
 
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The following formula can be used to compute the two-tailed probability that the sample mean would be further from 'p' ( μ</font></font></font><font color="#484848"><sub><font face="Arial, sans-serif"><font size="2">0</font></font></sub></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">) than AVERAGE(ar), when the underlying population mean is μ</font></font></font><font color="#484848"><sub><font face="Arial, sans-serif"><font size="2">0</font></font></sub></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">:</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=2 * MIN(ZTEST(array,μ</nowiki></font></font></font><font color="#484848"><sub><font face="Arial, sans-serif"><font size="2">0</font></font></sub></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,sigma), 1 - ZTEST(array,μ</font></font></font><font color="#484848"><sub><font face="Arial, sans-serif"><font size="2">0</font></font></sub></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,sigma)).</font></font></font>
 
  
</div>
+
==Related Videos==
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
ZTEST
+
{{#ev:youtube|wmG7jlpX320|280|center|Z-TEST}}
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/NORMDIST  | NORMDIST ]]
<div id="8SpaceContent" class="zcontent" align="left">
+
*[[Manuals/calci/NORMINV  | NORMINV ]]
 +
*[[Manuals/calci/NORMSDIST  | NORMSDIST ]]
 +
*[[Manuals/calci/NORMSINV  | NORMSINV ]]
 +
*[[Manuals/calci/STANDARDIZE  | STANDARDIZE ]]
  
<nowiki>=ZTEST(B2:B8,4) is 0.0025</nowiki>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Z-test Z-test]
  
<nowiki>=2*MIN(ZTEST(B2:B8,4),1-ZTEST(B2:B8,4)) is 0.005 </nowiki>
 
  
<nowiki>=ZTEST(B2:B8,6) is 0.427 </nowiki>
 
  
<nowiki>=2*MIN(ZTEST(B2:B8,6),1-ZTEST(B2:B8,6)) is 0.8451 </nowiki>
 
  
</div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 5
 
| class="sshl_f" | 0.002491
 
| 4
 
| class="sshl_f" | 5
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 7
 
| class="sshl_f" | 0.004982
 
| 9
 
| class="sshl_f" | 128
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 9
 
| class="sshl_f" | 0.427068
 
| 14
 
| class="sshl_f    " | 15
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 8
 
| class="sshl_f" | 0.854136
 
| class="sshl_f" | 10000
 
| class="  " | 20
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" | 6
 
| class="sshl_f SelectTD ChangeBGColor SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" | 5
 
| 1.286186
 
| 27
 
| 40
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f" | 3
 
| 0.850904
 
| 1.619775
 
| 0.525322
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 03:34, 7 September 2020

ZTEST (Array,Mean,StandardDeviationForPopulation,IsTwoTailed,Accuracy)


  • is the set of values.
  • is the mean value.
  • is the standard deviation of the population.
  • is the value of the tail.
  • gives accurate value of the solution.
    • ZTEST() returns the one-tailed probability-value of a z-test.

Description

  • This function gives the one-tailed probability of z-test.
  • Z-test is used to determine whether two population means are different when the variances are known and the sample size is large.
  • In , is the array of values against which the hypothesized sample mean is to be tested.
  • is the hypothesized sample mean, and is the standard deviation of the population.
  • When we are not giving the sigma value, it will use the standard deviation of sample.
  • This function returns the probability that the supplied hypothesized sample mean is greater than the mean of the supplied data values.
  • The test statistic should follow a normal distribution.
  • ZTEST is calculated when sigma is not omitted and x=μ0 :
  • ZTEST is calculated when sigma is omitted and x=μ0:

where is sample mean , is the sample deviation and is the size of the sample.

  • Suppose we want to calculate the z-test for two tailed probability then this can be done by using the Z_test function: .
  • This function will give the result as error when
    1. Any one of the argument is non-numeric.
    2. Array or Mean value is empty.
    3. Array contains only one value.

Examples

  1. Example 1
Spreadsheet
A B C D E F G
1 10 15 7 2 19 20 12
2 3 4 8 1 10 15 5
  1. =ZTEST(A1:G1,4) = 0.00042944272036
  2. =2*MIN(ZTEST(A1:G1,4),1-ZTEST(A1:G1,4)) = 0.000858885440
  3. =ZTEST(A2:F2,10) = 0.9708451547030459
  4. =2*MIN(ZTEST(A2:F2,10),1-ZTEST(A2:F2,10)) = 0.058309690593908226

Related Videos

Z-TEST

See Also

References