Difference between revisions of "Manuals/calci/BESSELI"

From ZCubes Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 
*The solutions of this equation are called Bessel Functions of order <math>n</math>.
 
*Bessel functions of the first kind, denoted as <math>Jn(x)</math>.  
 
*Bessel functions of the first kind, denoted as <math>Jn(x)</math>.  
*The <math>n^th</math> order modified Bessel function of the variable <math>x</math> is: <math>In(x)=i^{-nJn(ix)}</math> ,where Jn(x)=summation(k=0 to infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
+
*The <math>n^th</math> order modified Bessel function of the variable <math>x</math> is: <math>In(x)=i^{-n}Jn(ix)}</math> ,where <math>Jn(x)=\sum_k=0 \infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
 
*This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.
 
*This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.
  

Revision as of 04:51, 29 November 2013

BESSELI(x,n)


  • is the value to evaluate the function
  • is an integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as:

where is the arbitrary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order .
  • Bessel functions of the first kind, denoted as .
  • The order modified Bessel function of the variable is: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle In(x)=i^{-n}Jn(ix)}} ,where <math>Jn(x)=\sum_k=0 \infinity){(-1)^k(x/2)^n+2k}/k!gamma(n+k+1).
  • This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function.

Examples

  1. BESSELI(3,2)=2.245212431(Excel) this is the n th derivative(In(x))=3.9533702171(Calci)this is the 1st derivative(I1(x))
  2. BESSELI(5,1)=24.33564185
  3. BESSELI(6,0)=67.23440724(Excel) I0(x)61.3419369373(CALCI) I1(x)
  4. BESSELI(-2,1)=0.688948449(Excel) =-1.5906368573(CALCI)
  5. BESSELI(2,-1)=NAN ,because n<0.

See Also

References

| Bessel Function