Difference between revisions of "Manuals/calci/IMLN"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''IMLN(z)'''</div><br/>
+
<div style="font-size:30px">'''IMLN(Complexnumber)'''</div><br/>
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
+
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>  
  
 
==Description==
 
==Description==
 
*This function gives the Natural Logarithm of a complex number.
 
*This function gives the Natural Logarithm of a complex number.
*In IMLN(z), where <math>z</math> is the complex number in the form of <math>x+iy</math>. i.e <math>x</math> & <math>y</math> are the real numbers.
+
*In <math>IMLN(Complexnumber)</math>, where Complexnumber is in the form of <math>z=x+iy</math>. i.e <math>x</math> & <math>y</math> are the real numbers.
*<math>I</math> imaginary unit <math>i=\sqrt{-1}</math>.
+
*And <math>I</math> is the imaginary unit <math>i=\sqrt{-1}</math>.
 +
*Normally Complex logarithm function is an inverse of the Complex exponential function.
 
*A logarithm of <math>z</math> is a complex number <math>w</math> such that <math>z = e^w</math> and it is denoted by <math>ln(z)</math>.  
 
*A logarithm of <math>z</math> is a complex number <math>w</math> such that <math>z = e^w</math> and it is denoted by <math>ln(z)</math>.  
 
*If <math>z = x+iy</math> with <math>x</math> & <math>y</math> are real numbers then natural logarithm of a complex number :  
 
*If <math>z = x+iy</math> with <math>x</math> & <math>y</math> are real numbers then natural logarithm of a complex number :  
 
<math>ln(z)= w = ln(|z|) + iarg(z) = ln(\sqrt{x^2+y^2}+itan^{-1}(\frac{y}{x})</math>                                                                                                                            adding integer multiples of <math>2\pi i</math> gives all the others.
 
<math>ln(z)= w = ln(|z|) + iarg(z) = ln(\sqrt{x^2+y^2}+itan^{-1}(\frac{y}{x})</math>                                                                                                                            adding integer multiples of <math>2\pi i</math> gives all the others.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 +
 +
==ZOS Section==
 +
*The syntax is to calculate the natural logarithm of a complex number in ZOS is <math>IMLN(Complexnumber)</math>.
 +
**<math>Complexnumber</math> is of the form <math>z=x+iy</math>
 +
*For e.g.,
  
 
==Examples==
 
==Examples==

Revision as of 00:06, 23 June 2014

IMLN(Complexnumber)


  • is of the form

Description

  • This function gives the Natural Logarithm of a complex number.
  • In , where Complexnumber is in the form of . i.e & are the real numbers.
  • And is the imaginary unit .
  • Normally Complex logarithm function is an inverse of the Complex exponential function.
  • A logarithm of is a complex number such that and it is denoted by .
  • If with & are real numbers then natural logarithm of a complex number :

adding integer multiples of gives all the others.

  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS Section

  • The syntax is to calculate the natural logarithm of a complex number in ZOS is .
    • is of the form
  • For e.g.,

Examples

  1. IMLN("3-2i")=1.28247467873077-0.588002603547568i
  2. IMLN("6+7i")=2.22132562824516+0.862170054667226i
  3. IMLN("4")=1.38629436111989 But calci is not considering the zero value of imaginary value of z.
  4. IMLN("10i")=2.30258509299405+1.5707963267949i

See Also

References

Imaginary Logarithms