Difference between revisions of "Manuals/calci/BETAFUNCTION"
Jump to navigation
Jump to search
Line 21: | Line 21: | ||
==References== | ==References== | ||
[http://math.feld.cvut.cz/mt/txtd/5/txe3da5h.htm Beta Function] | [http://math.feld.cvut.cz/mt/txtd/5/txe3da5h.htm Beta Function] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Revision as of 01:24, 13 March 2017
BETAFUNCTION (a,b)
- and are any positive real numbers.
Description
- This function returns the value of the Beta function.
- Beta function is also called the Euler integral of the first kind.
- To evaluate the Beta function we usually use the Gamma function.
.
- For x,y positive we define the Beta function by:
Examples
- BETAFUNCTION(10,23) = 1.550093439705759e-9
- BETAFUNCTION(9.1,7.4) = 0.00001484129272494359
- BETAFUNCTION(876,432) = NaN
See Also
References