Difference between revisions of "Manuals/calci/BINOMIALDISTRIBUTED"

From ZCubes Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
<math> b(k;n,p)=Pr(X = k) = \binom{n}{k}p^{k}(1-p)^{n-k}</math> for k=0,1,2,3...n where  <math>\binom{n}{k}</math> is the COMBIN(n,k) i.e.<math> \binom{n}{k} = \frac{n!}{k!(n-k)}!</math>
 
<math> b(k;n,p)=Pr(X = k) = \binom{n}{k}p^{k}(1-p)^{n-k}</math> for k=0,1,2,3...n where  <math>\binom{n}{k}</math> is the COMBIN(n,k) i.e.<math> \binom{n}{k} = \frac{n!}{k!(n-k)}!</math>
  
*The Cumulative Binomial Distribution is:<math>B(x;n,p) = Pr(X \le x) =\sum_{i=0}^x  \binom{n}{i}p^{i}(1-p)^{(n-i)}</math>
+
*The Cumulative Binomial Distribution is:<math>B(x;n,p) = Pr(X \le x) =\sum_{i=0}^x  \binom{n}{i}p^{i}(1-p)^{(n-i)}</math>.
 +
 
 +
==Examples==
 +
#BINOMIALDISTRIBUTED(10,0.4) = 0 0 0 0 0 0 0 0
 +
 
 +
==See Also==
 +
 
 +
*[[Manuals/calci/BINOMDIST | BINOMDIST]]
 +
*[[Manuals/calci/COMBIN | COMBIN]]
 +
*[[Manuals/calci/FACT | FACT]]
 +
 
 +
==References==
 +
[http://en.wikipedia.org/wiki/Binomial_distribution  Binomial Distribution]

Revision as of 14:59, 13 December 2016

BINOMIALDISTRIBUTED (Numbers,Probability)


  • is the number of variables.
  • is the value from 0 to 1.

Description

  • This function gives the value of the Binomial distribution.
  • In , is the number of the variables and is the probability value which varies from 0 to 1.
  • This gives the discrete probability distribution.
  • The probability of getting exactly k successes in n trials is given by the Probability Mass Function:

for k=0,1,2,3...n where is the COMBIN(n,k) i.e.

  • The Cumulative Binomial Distribution is:.

Examples

  1. BINOMIALDISTRIBUTED(10,0.4) = 0 0 0 0 0 0 0 0

See Also

References

Binomial Distribution