Difference between revisions of "Manuals/calci/DOTPRODUCT"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
*This product is an example of an Inner product. | *This product is an example of an Inner product. | ||
*Dot product of two vectors is defined as: <math>a=[a_1,a_2,a_3..a_n]</math> and <math>b=[b_1,b_2,b_3..b_n]</math> then <math>a.b= \sum_{i=1}^n a_{i}b_{i}= a_1b_1+a_2b_2+...a_nb_n</math> where <math>\Sigma</math> denotes summation notation and <math>n</math> is the dimension of the vector space. | *Dot product of two vectors is defined as: <math>a=[a_1,a_2,a_3..a_n]</math> and <math>b=[b_1,b_2,b_3..b_n]</math> then <math>a.b= \sum_{i=1}^n a_{i}b_{i}= a_1b_1+a_2b_2+...a_nb_n</math> where <math>\Sigma</math> denotes summation notation and <math>n</math> is the dimension of the vector space. | ||
+ | |||
+ | ==Examples== | ||
+ | #DOTPRODUCT([3,6,9],[10,12,7]) = 165 | ||
+ | #DOTPRODUCT([2.5,5.9,6.25],[9,12,13.04]) = 174.8 | ||
+ | #DOTPRODUCT([-7,-3,5],[101,231,-432]) = -3560 | ||
+ | #DOTPRODUCT([2/3,8/6,10/3],[2,4,6]) = 26.666666666666664 | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/CROSSPRODUCT | CROSSPRODUCT ]] | ||
+ | *[[Manuals/calci/CARTESIANPRODUCT | CARTESIANPRODUCT ]] | ||
+ | *[[Manuals/calci/SCALARPRODUCT | SCALARPRODUCT ]] | ||
+ | |||
+ | ==References== | ||
+ | [http://tutorial.math.lamar.edu/Classes/CalcII/DotProduct.aspx | Dot Product] |
Revision as of 14:08, 3 March 2017
DOTPRODUCT(a,b)
- and are any two set values.
Description
- This function shows the Dot product of the given numbers.
- Dot product is also called Scalar Product.
- This product is an example of an Inner product.
- Dot product of two vectors is defined as: and then where denotes summation notation and is the dimension of the vector space.
Examples
- DOTPRODUCT([3,6,9],[10,12,7]) = 165
- DOTPRODUCT([2.5,5.9,6.25],[9,12,13.04]) = 174.8
- DOTPRODUCT([-7,-3,5],[101,231,-432]) = -3560
- DOTPRODUCT([2/3,8/6,10/3],[2,4,6]) = 26.666666666666664