Difference between revisions of "Manuals/calci/MATRIXINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
a  & b    \\  
 
a  & b    \\  
 
c  & d
 
c  & d
\end{bmatrix}}^{-1}</math>=<math>1/det A \begin{bmatrix}
+
\end{bmatrix}}^{-1}</math>=<math>\frac{1}{det A }\begin{bmatrix}
 
d  & -b    \\  
 
d  & -b    \\  
 
-c  & a
 
-c  & a
\end{bmatrix}</math> =<math> 1/ad-bc \begin{bmatrix}
+
\end{bmatrix}</math> =\frac{1}{ad-bc} \begin{bmatrix}
 
d  & -b    \\  
 
d  & -b    \\  
 
-c  & a
 
-c  & a
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 +
*Consider 3x3 matrix A and its inverse is calculated by
 +
<math>A^{-1}={\begin{bmatrix}
 +
a  & b & c    \\
 +
d & e & f \\
 +
g & h & i
 +
\end{bmatrix}}^{-1}</math>=<math>\frac{1}{det A }{\begin{bmatrix}
 +
A  & B & C    \\
 +
D & E & F \\
 +
G & H & I
 +
\end{bmatrix}}^T </math>= <math>\frac{1}{det A } {\begin{bmatrix}
 +
A  & D & G    \\
 +
B & E & H \\
 +
C & F & I
 +
\end{bmatrix}}</math>

Revision as of 16:12, 20 June 2017

MATRIXINVERSE (a)


  • is any matrix.

Description

  • This function shows the inverse value of the given matrix.
  • In , is any square matrix.
  • Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by .
  • Consider the square matrix A has an inverse which should satisfies the following condition
  • Also (Identity matrix).
  • Consider 2x2 matrix:A=[a b;c d].
  • The inverse of matrix A is calculated by

= =\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}</math>

  • Consider 3x3 matrix A and its inverse is calculated by

==