Difference between revisions of "Manuals/calci/IMLN"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMLN(z)'''</div><br/> |
+ | *<math>z</math> is the complex number is of the form <math>x+iy</math> | ||
− | + | ==Description== | |
+ | *This function gives the natural logarithm of a complex number. | ||
+ | *In IMLN(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers. | ||
+ | *'I' imaginary unit .i=sqrt(-1). | ||
+ | *A logarithm of z is a complex number w such that z = e^w and it is denoted by ln(z). | ||
+ | *If z = x+iy with x&y are real numbers then natural logarithm of a complex number : <math>ln(z)= w = ln(|z|) + iarg(z) =ln(sqrt(x^2+y^2)+itan^-1(y/x</math> adding integer multiples of 2πi gives all the others. | ||
+ | *We can use COMPLEX function to convert real and imaginary number in to a complex number. | ||
+ | ==Examples== | ||
− | + | #IMLN("3-2i")=1.28247467873077-0.588002603547568i | |
− | + | #IMLN("6+7i")=2.22132562824516+0.862170054667226i | |
− | + | #IMLN("4")=1.38629436111989 But calci is not considering the zero value of imaginary value of z. | |
+ | #IMLN("10i")=2.30258509299405+1.5707963267949i | ||
− | + | ==See Also== | |
+ | *[[Manuals/calci/IMLOG10 | IMLOG10 ]] | ||
+ | *[[Manuals/calci/IMLOG2 | IMLOG2 ]] | ||
+ | *[[Manuals/calci/COMPLEX | COMPLEX ]] | ||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Bessel_function Bessel Function] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 03:00, 16 December 2013
IMLN(z)
- is the complex number is of the form
Description
- This function gives the natural logarithm of a complex number.
- In IMLN(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
- 'I' imaginary unit .i=sqrt(-1).
- A logarithm of z is a complex number w such that z = e^w and it is denoted by ln(z).
- If z = x+iy with x&y are real numbers then natural logarithm of a complex number : adding integer multiples of 2πi gives all the others.
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
Examples
- IMLN("3-2i")=1.28247467873077-0.588002603547568i
- IMLN("6+7i")=2.22132562824516+0.862170054667226i
- IMLN("4")=1.38629436111989 But calci is not considering the zero value of imaginary value of z.
- IMLN("10i")=2.30258509299405+1.5707963267949i
See Also