Difference between revisions of "Manuals/calci/BESSELY"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY'''</font></font></font><font color="#48...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v '''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''o'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''BESSELY(x,n)'''</div><br/>
 +
*Where x is the value at which to evaluate the function and n is the integer which is the order of the Bessel function
 +
==Description==
 +
*This function gives the value of the modified Bessel function.
 +
*Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
 +
*Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0
 +
where α is the arbitary complex number.
 +
*But in most of the cases α is the non-negative real number.
 +
*The solutions of this equation are called Bessel Functions of order n.
 +
*The Bessel function of the second kind  Yn(x) and sometimes it is called Weber function or the Neumann function..
 +
*The Bessel function of the 2nd kind of order  can be expressed as: Yn(x)=lt p tends to n {Jp(x)Cosp pi()- J-p(x)}/Sinp pi(), where Jn(x) is the Bessel functions of the first kind.
 +
*This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function
 +
==Examples==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>Where 'v'' is the value to evaluate the function and 'o' is the order of the function. </nowiki></font></font></font>
+
#BESSELY(2,3)=-1.127783765(EXCEL)Yn(x)=-0.1070324316(CALCI)Y1(x)
 +
#BESSELY(0.7,4)=-132.6340573(EXCEL)Yn(x)=-1.1032498713(CALCI)Y1(x)
 +
#BESSELY(9,1)=0.104314575
 +
#BESSELY(2,-1)=NAN
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/BESSELI  | BESSELI ]]
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the Bessel function.</font></font></font></div>
+
*[[Manuals/calci/BESSELK  | BESSELK ]]
----
+
*[[Manuals/calci/BESSELJ  | BESSELJ ]]
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">BESSELI returns the error value when 'v' and 'o' are nonnumeric. </font></font></font>
+
==References==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">'0' should be grater than 1</font></font></font>
+
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
** <font color="#484848"><font face="Arial, sans-serif"><font size="2">The o-th order Bessel function of the variable 'v' is: </font></font></font>
 
 
 
* <font color="#484848"></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">where v = x and o = n</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
BESSELY
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY(v ,o)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''BESSELY(C1R1, C2R2)'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=BESSELY(3, 1) is 0.3247</nowiki>'''</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 3
 
| class="sshl_f" | 0.324674
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 1
 
| class="SelectTD SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="                                      sshl_f                    " |
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:19.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/19.JPG]]</div></div>
 
----
 

Revision as of 04:03, 29 November 2013

BESSELY(x,n)


  • Where x is the value at which to evaluate the function and n is the integer which is the order of the Bessel function

Description

  • This function gives the value of the modified Bessel function.
  • Bessel functions is also called cylinder functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
  • Bessel's Differential Equation is defined as: x^2 (d^2 y/dx^2) + x(dy/dx) + (x^2 - α^2)y =0

where α is the arbitary complex number.

  • But in most of the cases α is the non-negative real number.
  • The solutions of this equation are called Bessel Functions of order n.
  • The Bessel function of the second kind Yn(x) and sometimes it is called Weber function or the Neumann function..
  • The Bessel function of the 2nd kind of order can be expressed as: Yn(x)=lt p tends to n {Jp(x)Cosp pi()- J-p(x)}/Sinp pi(), where Jn(x) is the Bessel functions of the first kind.
  • This function will give the result as error when 1.x or n is non numeric2. n<0, because n is the order of the function

Examples

  1. BESSELY(2,3)=-1.127783765(EXCEL)Yn(x)=-0.1070324316(CALCI)Y1(x)
  2. BESSELY(0.7,4)=-132.6340573(EXCEL)Yn(x)=-1.1032498713(CALCI)Y1(x)
  3. BESSELY(9,1)=0.104314575
  4. BESSELY(2,-1)=NAN

See Also

References

Absolute_value