Difference between revisions of "Manuals/calci/MULTINOMIAL"

From ZCubes Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
*Multinomial of n set of numbers is defined by:<math> MULTINOMIAL(x1,x2,..xn)=\frac{(x1+x2+…+xn)!}{x1!x2!..xn!}</math>
 
*Multinomial of n set of numbers is defined by:<math> MULTINOMIAL(x1,x2,..xn)=\frac{(x1+x2+…+xn)!}{x1!x2!..xn!}</math>
 
This function gives the result as error when  
 
This function gives the result as error when  
  1.Any one of the  argument is nonnumeric.
+
  1.Any one of the  argument is non-numeric.
 
  2.Any one of the argument is <0.
 
  2.Any one of the argument is <0.
*In <math>MULTINOMIAL(x1,x2...)</math>, <math>x1</math> is required.<math>x2,x3,...</math> ,are optional.
+
*In <math>MULTINOMIAL(x1,x2...)</math>, <math>x1</math> is required.<math>x2,x3,...</math> are optional.
  
 
==Examples==
 
==Examples==

Revision as of 03:06, 3 January 2014

MULTINOMIAL(x1,x2,..)


  • are numbers

Description

  • This function gives the multinomial of the values.
  • Multinomial means the ratio of the factorial of a sum of values to the product of factorials.
  • Multinomial of n set of numbers is defined by:Failed to parse (syntax error): {\displaystyle MULTINOMIAL(x1,x2,..xn)=\frac{(x1+x2+…+xn)!}{x1!x2!..xn!}}

This function gives the result as error when

1.Any one of the  argument is non-numeric.
2.Any one of the argument is <0.
  • In , is required. are optional.

Examples

  1. MULTINOMIAL(10,11)=352716
  2. MULTINOMIAL(2,3,4,5)=2522520
  3. MULTINOMIAL(0,1.2,1.3,1.4,1.5)=24
  4. MULTINOMIAL(0,-1,2)=NAN

See Also

References