Difference between revisions of "Manuals/calci/PERMUT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''PERMUT'''(Number, NumberChosen) where, '''Number''' -  represents number of objects. '''NumberChosen'''...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''PERMUT(n,nc)'''</div><br/>
 +
*<math>n</math>  and <math> nc </math> are integers
  
'''PERMUT'''(Number, NumberChosen)
 
  
where,
+
==Description==
 +
*This function gives the number of Permutations for a given number of objects.
 +
*A permutation, also called an arrangement number or order is a rearrangement of the elements of an ordered list.
 +
*A selection of objects in which the order of the objects matters.
 +
*A Permutation is an ordered Combination.
 +
*In <math>PERMUT(n,nc), n</math> is an integer which is indicating the number of objects and nc is an integer which is indicating the number of objects in each permutation.
 +
*For n and nc ,when we are giving in to decimals it will change in to integers.
 +
*The formula for the number of permutation is:<math>n P_k= \frac {n!}{(n-k)!}
 +
*The Permutation is denoted by nPk, Pn,k, or P(n,k).This function will give the result as error when
 +
1.n and nc are nonnumeric.
 +
2.Suppose n<=0 or nc<0 or n<nc.
  
'''Number''' -  represents number of objects.
+
==Examples==
 +
#PERMUT(14,2)=182
 +
#PERMUT(50,5)=254251200
 +
#PERMUT(10.2,3)=720
 +
#PERMUT(4,0)=1
 +
#PERMUT(6,1)=6 
  
'''NumberChosen''' - represents the number of objects in  each permutation.
 
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/BINOMDIST  | BINOMDIST ]]
<div id="1SpaceContent" class="zcontent" align="left">
+
*[[Manuals/calci/COMBIN  | COMBIN ]]
 +
*[[Manuals/calci/FACT  | FACT ]]
 +
*[[Manuals/calci/NEGBINOMDIST  | NEGBINOMDIST ]]
  
Returns the number of permutations of number of objects.A permutation is sset of objects or events where internal order is significant.Permutations are different from Combination, for which internal order is
+
==References==
 
 
not significant.
 
 
 
'''Formula''':-
 
 
 
PERMUT = P<sub>k,n <sup>= n!/(n-k)!</sup></sub>
 
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
If  Number &lt;=  0, PERMUT returns the #ERROR.
 
 
 
If Number &lt; NumberChosen, it returns the #ERROR.
 
 
 
If Number or NumberChosen is nonnumeric ,it returns NaN
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
PERMUT
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example in (Column1, Row3)
 
 
 
<nowiki>=PERMUT(R1C1,R2C1)</nowiki>
 
 
 
PERMUT returns 1980.
 
 
 
Cosider an another example
 
 
 
<nowiki>=PERMUT(-50,8)</nowiki>
 
 
 
It returns #ERROR(Number =-50).
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 45
 
|
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f " | 2
 
|
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 1980
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
| class=" SelectTD ChangeBGColor SelectTD" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 01:30, 6 January 2014

PERMUT(n,nc)


  • and are integers


Description

  • This function gives the number of Permutations for a given number of objects.
  • A permutation, also called an arrangement number or order is a rearrangement of the elements of an ordered list.
  • A selection of objects in which the order of the objects matters.
  • A Permutation is an ordered Combination.
  • In is an integer which is indicating the number of objects and nc is an integer which is indicating the number of objects in each permutation.
  • For n and nc ,when we are giving in to decimals it will change in to integers.
  • The formula for the number of permutation is:<math>n P_k= \frac {n!}{(n-k)!}
  • The Permutation is denoted by nPk, Pn,k, or P(n,k).This function will give the result as error when
1.n and nc are nonnumeric.
2.Suppose n<=0 or nc<0 or n<nc.

Examples

  1. PERMUT(14,2)=182
  2. PERMUT(50,5)=254251200
  3. PERMUT(10.2,3)=720
  4. PERMUT(4,0)=1
  5. PERMUT(6,1)=6


See Also

References