Difference between revisions of "Manuals/calci/STANDARDIZE"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">'''STANDARDIZE'''</font></font><font face="Arial, sans-serif"><font siz...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''STANDARDIZE(x,m,sd)'''</div><br/>
 +
*<math>x </math> is the value.
 +
*<math> m </math> is the mean.
 +
*<math> sd </math> is the standard deviation.
  
<font face="Arial, sans-serif"><font size="2">'''STANDARDIZE'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''val'''</font></font><font face="Arial, sans-serif"><font size="2">,</font></font><font face="Arial, sans-serif"><font size="2">''' m, sd'''</font></font><font face="Arial, sans-serif"><font size="2">)</font></font>
 
  
<font face="Arial, sans-serif"><font size="2"></font></font><font face="Arial, sans-serif"><font size="2">'''Where val'''</font></font><font face="Arial, sans-serif"><font size="2">  is the value to normalize and m is the arithmetic mean and sd is the standard deviation of the distribution.</font></font>
+
==Description==
 +
*This function gives the  normalized value of any distribution.
 +
*Standardize is the normalized value for a distribution characterized by a given mean and standard deviation.
 +
*In <math> STANDARDIZE(x,m,sd), x </math> is the value to be normalized , <math> m </math> is the arithmetic mean of the distribution, and <math> sd </math> is the standard deviation of the distribution.
 +
*The equation for the normalized value is:<math> Z= \frac{x-\mu}{\sigma}</math>, where <math> \mu </math> is the arithmetic mean and <math>\sigma </math> is the standard deviation.
 +
*This function will give the result as error when
 +
      1. Any one of the argument is nonnumeric.
 +
      2. sd<=0
  
# <font face="Arial, sans-serif"><font size="2">When sd is equal to zero , the function displays infinity. </font></font>
 
# <font face="Arial, sans-serif"><font size="2">The equation for calculating normalized value is: </font></font>
 
  
</div>
+
==Examples==
----
+
#=STANDARDIZE(25,20,10.2) = 0.490196078431
<div id="1SpaceContent" class="zcontent" align="left"><font face="Arial, sans-serif"><font size="2">It calculates a normalized value from a distribution characterized by mean and standard deviation</font></font></div>
+
#=STANDARDIZE(52.5,42,3.25) = 3.230769230769
----
+
#=STANDARDIZE(30,35,4.21) = -1.187648456057
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
#=STANDARDIZE(2,0,5.3) = 0.377358490566
 +
#=STANDARDIZE(-2,1,6.17) = -0.48622366288
  
STANDARDIZE
 
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/NORMDIST  | NORMDIST ]]
<div id="8SpaceContent" class="zcontent" align="left"><font color="#7f7f7f"><font face="Arial, sans-serif"><font size="2">
+
*[[Manuals/calci/NORMINV  | NORMINV ]]
 +
*[[Manuals/calci/NORMSDIST  | NORMSDIST ]]
 +
*[[Manuals/calci/NORMSINV  | NORMSINV ]]
  
<font color="#7f7f7f"><font face="Arial, sans-serif"><font size="2">  </font></font></font>
 
  
<font color="#000000"><font face="Times New Roman, serif"><font size="3">Let’s see an example in (Column1 Row 1,Column1Row2, Column1 Row 3)</font></font></font>
 
  
<font color="#000000"><font face="Times New Roman, serif"><font size="3">i.e.STANDARDIZE(val,m,sd)</font></font></font>
+
==References==
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3"><nowiki>=STANDARDIZE(C1R1,C1R2,C1R3)</nowiki></font></font></font>
 
 
 
<font color="#000000"><font face="Times New Roman, serif"><font size="3"><nowiki>=STANDARDIZE(50,40,2.5) is 4</nowiki></font></font></font>
 
 
 
</font></font></font></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="      " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 50
 
| class="sshl_f" | 4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 40
 
| class="  SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f " | 2.5
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
|
 
|
 
|
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f  " | Row7
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row8
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row9
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 23:41, 2 February 2014

STANDARDIZE(x,m,sd)


  • is the value.
  • is the mean.
  • is the standard deviation.


Description

  • This function gives the normalized value of any distribution.
  • Standardize is the normalized value for a distribution characterized by a given mean and standard deviation.
  • In is the value to be normalized , is the arithmetic mean of the distribution, and is the standard deviation of the distribution.
  • The equation for the normalized value is:, where is the arithmetic mean and is the standard deviation.
  • This function will give the result as error when
     1. Any one of the argument is nonnumeric. 
     2. sd<=0


Examples

  1. =STANDARDIZE(25,20,10.2) = 0.490196078431
  2. =STANDARDIZE(52.5,42,3.25) = 3.230769230769
  3. =STANDARDIZE(30,35,4.21) = -1.187648456057
  4. =STANDARDIZE(2,0,5.3) = 0.377358490566
  5. =STANDARDIZE(-2,1,6.17) = -0.48622366288


See Also


References