Difference between revisions of "Manuals/calci/BETAFUNCTION"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
*For x,y positive we define the Beta function by: | *For x,y positive we define the Beta function by: | ||
<math>B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt</math> | <math>B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt</math> | ||
+ | |||
+ | ==Examples== | ||
+ | #BETAFUNCTION(10,23) = 1.550093439705759e-9 | ||
+ | #BETAFUNCTION(9.1,7.4) = 0.00001484129272494359 | ||
+ | #BETAFUNCTION(876,432) = NaN | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/BETADISTX | BETADISTX]] | ||
+ | *[[Manuals/calci/BETAINV | BETAINV]] | ||
+ | |||
+ | ==References== | ||
+ | [http://math.feld.cvut.cz/mt/txtd/5/txe3da5h.htm Beta Function] |
Revision as of 14:47, 7 December 2016
BETAFUNCTION (a,b)
- and are any positive real numbers.
Description
- This function returns the value of the Beta function.
- Beta function is also called the Euler integral of the first kind.
- To evaluate the Beta function we usually use the Gamma function.
.
- For x,y positive we define the Beta function by:
Examples
- BETAFUNCTION(10,23) = 1.550093439705759e-9
- BETAFUNCTION(9.1,7.4) = 0.00001484129272494359
- BETAFUNCTION(876,432) = NaN