Difference between revisions of "Manuals/calci/BETADISTX"

From ZCubes Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Beta_distribution  Beta Distribution]
 
[http://en.wikipedia.org/wiki/Beta_distribution  Beta Distribution]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Revision as of 01:24, 13 March 2017

BETADISTX(x,alpha,beta)


  • is any real number.
  • alpha and beta are the value of the shape parameter

Description

  • This function gives the Cumulative Beta Probability Density function.
  • The beta distribution is a family of Continuous Probability Distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by and .
  • The Beta Distribution is also known as the Beta Distribution of the first kind.
  • In , is any real number.
  • alpha is the value of the shape parameter.
  • beta is the value of the shape parameter
  • The Probability Density Function of the beta distribution is:

where ; and is the Beta function.

  • The formula for the Cumulative Beta Distribution is called the Incomplete Beta function ratio and it is denoted by and is defined as :

Failed to parse (syntax error): {\displaystyle F(x)=I_{x}(\alpha,\beta)=\int\limits_{0}^{x}\frac{t^{α−1}(1−t)^{\beta−1}dt} {B(\alpha,\beta)}} , where  ; and is the Beta function.

  • This function will give the result as error when
1.Any one of the arguments are non-numeric.
2. or 

Examples

  1. =BETADISTX(0.67,9,12) = 0.3102416743686678
  2. =BETADISTX(6,34,37) = 2.576888446568541e+72
  3. =BETADISTX(100,456,467)= NaN

See Also

References

Beta Distribution