Difference between revisions of "Manuals/calci/SCALARPRODUCT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''DOTPRODUCT(a,b)'''</div><br/> *<math>a</math> and <math>b</math> are any two set values.")
 
Line 1: Line 1:
 +
<div style="font-size:30px">'''SCALARPRODUCT(a,b)'''</div><br/>
 
<div style="font-size:30px">'''DOTPRODUCT(a,b)'''</div><br/>
 
<div style="font-size:30px">'''DOTPRODUCT(a,b)'''</div><br/>
 
*<math>a</math> and <math>b</math> are any two set values.
 
*<math>a</math> and <math>b</math> are any two set values.
 +
 +
==Description==
 +
*This function shows the Scalar product value.
 +
*In <math>DOTPRODUCT(a,b)</math> or <math>SCALARPRODUCT(a,b)</math>,<math>a</math> and <math>b</math> are two set of values with same length.
 +
*Dot product is also called Scalar Product.
 +
*This product is an example of an Inner product.
 +
*Dot product is the algebraic operation which calculates with the two equal length values and gives the single value as result.
 +
*Here a and b are two set of values with any real numbers.
 +
*Also a and b are having same length of values.
 +
*The dot product of two vectors <math>a = [a_1, a_2, ..., a_n]</math>and <math>b = [b_1, b_2, ..., b_n]</math> is defined as:
 +
<math>a.b = \sum_{i=1}^n a_{i}b_{i}= a_1b_1+a_2b_2+...a_nb_n</math> where <math>\Sigma</math> denotes summation notation and <math>n</math> is the dimension of the vector space.
 +
 +
==Examples==
 +
#SCALARPRODUCT([2,3,4],[9,8,7]) = 70
 +
#SCALARPRODUCT([3.2,4.5,10.3],[4,8,4.3]) = 93.09
 +
#SCALARPRODUCT([-6,-15,21],[32.3,19.3,20.3]) = -56.99999999999994
 +
 +
==See Also==
 +
*[[Manuals/calci/CROSSPRODUCT  | CROSSPRODUCT  ]]
 +
*[[Manuals/calci/CARTESIANPRODUCT | CARTESIANPRODUCT  ]]
 +
*[[Manuals/calci/SCALARPRODUCT | SCALARPRODUCT  ]]
 +
 +
==References==
 +
*[http://tutorial.math.lamar.edu/Classes/CalcII/DotProduct.aspx | Dot Product]
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
*[[ Z3 |  Z3 home ]]

Revision as of 12:49, 5 May 2017

SCALARPRODUCT(a,b)


DOTPRODUCT(a,b)


  • and are any two set values.

Description

  • This function shows the Scalar product value.
  • In or , and are two set of values with same length.
  • Dot product is also called Scalar Product.
  • This product is an example of an Inner product.
  • Dot product is the algebraic operation which calculates with the two equal length values and gives the single value as result.
  • Here a and b are two set of values with any real numbers.
  • Also a and b are having same length of values.
  • The dot product of two vectors and is defined as:

where denotes summation notation and is the dimension of the vector space.

Examples

  1. SCALARPRODUCT([2,3,4],[9,8,7]) = 70
  2. SCALARPRODUCT([3.2,4.5,10.3],[4,8,4.3]) = 93.09
  3. SCALARPRODUCT([-6,-15,21],[32.3,19.3,20.3]) = -56.99999999999994

See Also

References