Difference between revisions of "Manuals/calci/COSEC"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''COSEC(x)'''</div><br/>
 
<div style="font-size:30px">'''COSEC(x)'''</div><br/>
* where '''x''' is in Radians
+
* where '''x''' is the angle in Radians
* by default Calci use Radian as angle
+
* by default, Calci use angle in Radians
  
[[Manuals/calci/COSEC | COSEC]] can be used if the angle is in degrees.  
+
[[Manuals/calci/COSEC | COSEC]] can be used if the angle is in Degrees.  
  
 
The angle can be a single value or any complex array of values.
 
The angle can be a single value or any complex array of values.
Line 15: Line 15:
 
*In a right angled triangle '''Cosec(x) = Hypotenuse / Opposite side'''.
 
*In a right angled triangle '''Cosec(x) = Hypotenuse / Opposite side'''.
 
*Here x is in Radians.  
 
*Here x is in Radians.  
*To convert Radian to Degree  multiply 'x' with 180/PI() or we have to use the Radians function COSEC(RADIANS(x)) or DCOSEC(x).
+
*To convert a Degree value to Radian, multiply 'x' with PI()/180 or use the Radians function RADIANS(x) or DCOSEC(x).
*To convert a degree value to radian, multiply 'x' with PI()/180 or use the radians function RADIANS(X).
 
  
 
The following example shows how COSEC is applied to an array of numbers containing numbers 1..10.
 
The following example shows how COSEC is applied to an array of numbers containing numbers 1..10.
Line 49: Line 48:
 
== Examples ==
 
== Examples ==
 
'''COSEC(x)'''
 
'''COSEC(x)'''
*'''x  ''' is the angle in radians.
+
*''' x  ''' is the angle in radians.
  
 
{|id="TABLE1" class="SpreadSheet blue"
 
{|id="TABLE1" class="SpreadSheet blue"

Revision as of 03:25, 5 November 2013

COSEC(x)


  • where x is the angle in Radians
  • by default, Calci use angle in Radians

COSEC can be used if the angle is in Degrees.

The angle can be a single value or any complex array of values.

For example COSEC(1..100) can give an array of the results, which is the COSEC value for each of the elements in the array. The array could be of any shape.

Description

Consider     x = 90    then     =COSEC(RADIANS(90))    gives    1

  • This function gives the Cosecant of angle 'x'.
  • This function is the reciprocal of SIN function. i.e, Cosec(x) = 1 / Sin(x).
  • In a right angled triangle Cosec(x) = Hypotenuse / Opposite side.
  • Here x is in Radians.
  • To convert a Degree value to Radian, multiply 'x' with PI()/180 or use the Radians function RADIANS(x) or DCOSEC(x).

The following example shows how COSEC is applied to an array of numbers containing numbers 1..10.

  • Type =1..10@COSEC in Calci
  • Type =1..10@COSEC or 1..10@COSEC in ZOS
Number COSEC
1 1.1883951057781212
2 1.0997501702946164
3 7.086167395737187
4 -1.3213487088109024
5 -1.0428352127714058
6 -3.5788995472544056
7 1.5221010625637303
8 1.010756218400097
9 2.426486643551989
10 -1.8381639608896658

Examples

COSEC(x)

  • x   is the angle in radians.
COSEC(Radian) Value
COSEC(0) infinity
COSEC(1) 1.1883951057781212
COSEC(90) 1.1185724071637084

See Also

References